ThinkPHP 之 自定义模型、连贯操作要点_PHP教程
我来总结一下学了什么~
获取数据主键的方法:$goods_model -> getPk();
实例化数据表两种方法 new Model() ; M()快捷方法 快捷方法只占用一次内存而第一种方法会每次增加一次内存存储量
query()获得查询结果 execute()获得影响行数
D()方法用来获取自定义模型,D()函数的执行顺序为首先查找自定义模型当文件名和类名符合规则后执行自定义模型,若有不符合则查找表名进行实例化,若没有符合表名则返回false
连贯操作
field()为显示范围,where()为取值条件:用数组或对象作为条件,limit()为取值个数,order(para desc)为排序,group()为按照字段分组自动排序,having()另一种取值条件,table(tbname)为跨越表取值,table(db.tbname)为跨越数据库进行取值,定义数组$cont['para']=array('like','%a%');进行生成数组条件控制sql,sum()求和,avg()平均数,count()求个数

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显著突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

上週,在內部的離職潮和外部的口誅筆伐之下,OpenAI可謂是內憂外患:-侵權寡姐引發全球熱議-員工簽署“霸王條款”被接連曝出-網友細數奧特曼“七宗罪」闢謠:根據Vox獲取的洩漏資訊和文件,OpenAI的高級領導層,包括Altman在內,非常了解這些股權回收條款,並且簽署了它們。除此之外,還有一個嚴峻而迫切的問題擺在OpenAI面前——AI安全。最近,五名與安全相關的員工離職,其中包括兩名最著名的員工,「超級對齊」團隊的解散讓OpenAI的安全問題再次被置於聚光燈下。 《財星》雜誌報道稱,OpenA

在Go中,可以使用gorilla/websocket包發送WebSocket訊息。具體步驟:建立WebSocket連線。傳送文字訊息:呼叫WriteMessage(websocket.TextMessage,[]byte("訊息"))。發送二進位訊息:呼叫WriteMessage(websocket.BinaryMessage,[]byte{1,2,3})。

一、前言在过去的几年里,YOLOs由于其在计算成本和检测性能之间的有效平衡,已成为实时目标检测领域的主导范式。研究人员探索了YOLO的架构设计、优化目标、数据扩充策略等,取得了显著进展。同时,依赖非极大值抑制(NMS)进行后处理阻碍了YOLO的端到端部署,并对推理延迟产生不利影响。在YOLOs中,各种组件的设计缺乏全面彻底的检查,导致显著的计算冗余,限制了模型的能力。它提供了次优的效率,以及相对大的性能改进潜力。在这项工作中,目标是从后处理和模型架构两个方面进一步提高YOLO的性能效率边界。为此

目標偵測系統的標竿YOLO系列,再次獲得了重磅升級。自今年2月YOLOv9發布之後,YOLO(YouOnlyLookOnce)系列的接力棒傳到了清華大學研究人員的手上。上週末,YOLOv10推出的消息引發了AI界的關注。它被認為是電腦視覺領域的突破性框架,以其即時的端到端目標檢測能力而聞名,透過提供結合效率和準確性的強大解決方案,延續了YOLO系列的傳統。論文網址:https://arxiv.org/pdf/2405.14458專案網址:https://github.com/THU-MIG/yo

今年2月,Google上線了多模態大模型Gemini1.5,透過工程和基礎設施最佳化、MoE架構等策略大幅提升了效能和速度。擁有更長的上下文,更強推理能力,可以更好地處理跨模態內容。本週五,GoogleDeepMind正式發布了Gemini1.5的技術報告,內容涵蓋Flash版等最近升級,該文件長達153頁。技術報告連結:https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf在本報告中,Google介紹了Gemini1

記憶體洩漏會導致Go程式記憶體不斷增加,可通過:關閉不再使用的資源,如檔案、網路連線和資料庫連線。使用弱引用防止記憶體洩漏,當物件不再被強引用時將其作為垃圾回收目標。利用go協程,協程棧記憶體會在退出時自動釋放,避免記憶體洩漏。

70B模型,秒出1000token,换算成字符接近4000!研究人员将Llama3进行了微调并引入加速算法,和原生版本相比,速度足足快出了快了13倍!不仅是快,在代码重写任务上的表现甚至超越了GPT-4o。这项成果,来自爆火的AI编程神器Cursor背后团队anysphere,OpenAI也参与过投资。要知道在以快著称的推理加速框架Groq上,70BLlama3的推理速度也不过每秒300多token。Cursor这样的速度,可以说是实现了近乎即时的完整代码文件编辑。有人直呼好家伙,如果把Curs
