首頁 後端開發 Python教學 Python使用Srapy框架爬蟲模擬登陸並抓取知乎內容

Python使用Srapy框架爬蟲模擬登陸並抓取知乎內容

Jul 22, 2016 am 08:56 AM
python scrapy 爬蟲 知乎

一、Cookie原理
HTTP是無狀態的面向連線的協定, 為了保持連線狀態, 引入了Cookie機制
Cookie是http訊息標頭中的屬性,包括:

  • Cookie名字(Name)Cookie的值(Value)
  • Cookie的過期時間(Expires/Max-Age)
  • Cookie作用路徑(Path)
  • Cookie所在網域名稱(Domain),使用Cookie進行安全連線(Secure)

前兩個參數是Cookie應用的必要條件,另外,還包括Cookie大小(Size,不同瀏覽器對Cookie個數及大小限制是有差異的)。

二、模擬登陸
這次主要爬取的網站是知乎
爬取知乎就需要登陸的, 通過之前的python內建庫, 可以很容易的實現表單提交。

現在就來看看如何透過Scrapy實現表單提交。

首先查看登陸時的表單結果, 依然像前面使用的技巧一樣, 故意輸錯密碼, 方面抓到登陸的網頁頭部和表單(我使用的Chrome自帶的開發者工具中的Network功能)

201672182940777.png (702×170)

查看抓取到的表單可以發現有四個部分:

  • 信箱和密碼就是個人登陸的信箱和密碼
  • rememberme欄位表示是否記住帳號
  • 第一個欄位是_xsrf,猜測是一種驗證機制
  • 現在只有_xsrf不知道, 猜想這個驗證字段肯定會實現在請求網頁的時候發送過來, 那麼我們查看當前網頁的源碼(鼠標右鍵然後查看網頁源代碼, 或者直接用快捷鍵)

201672183128262.png (1788×782)

發現我們的猜測是正確的

那現在就可以來寫表單登陸功能了

def start_requests(self):
    return [Request("https://www.zhihu.com/login", callback = self.post_login)] #重写了爬虫类的方法, 实现了自定义请求, 运行成功后会调用callback回调函数

  #FormRequeset
  def post_login(self, response):
    print 'Preparing login'
    #下面这句话用于抓取请求网页后返回网页中的_xsrf字段的文字, 用于成功提交表单
    xsrf = Selector(response).xpath('//input[@name="_xsrf"]/@value').extract()[0]
    print xsrf
    #FormRequeset.from_response是Scrapy提供的一个函数, 用于post表单
    #登陆成功后, 会调用after_login回调函数
    return [FormRequest.from_response(response,  
              formdata = {
              '_xsrf': xsrf,
              'email': '123456',
              'password': '123456'
              },
              callback = self.after_login
              )]

登入後複製

其中主要的功能都在函數的註解中說明
三、Cookie的保存
為了能使用同一個狀態持續的爬取網站, 就需要保存cookie, 使用cookie保存狀態, Scrapy提供了cookie處理的中間件, 可以直接拿來使用

CookiesMiddleware:

這個cookie中間件保存追蹤web伺服器發出的cookie, 並將這個cookie在接來下的請求的時候進行發送
Scrapy官方的文件中給出了下面的程式碼範例 :

for i, url in enumerate(urls):
  yield scrapy.Request("http://www.example.com", meta={'cookiejar': i},
    callback=self.parse_page)

def parse_page(self, response):
  # do some processing
  return scrapy.Request("http://www.example.com/otherpage",
    meta={'cookiejar': response.meta['cookiejar']},
    callback=self.parse_other_page)

登入後複製

那麼可以對我們的爬蟲類中方法進行修改, 使其追蹤cookie

  #重写了爬虫类的方法, 实现了自定义请求, 运行成功后会调用callback回调函数
  def start_requests(self):
    return [Request("https://www.zhihu.com/login", meta = {'cookiejar' : 1}, callback = self.post_login)] #添加了meta

  #FormRequeset出问题了
  def post_login(self, response):
    print 'Preparing login'
    #下面这句话用于抓取请求网页后返回网页中的_xsrf字段的文字, 用于成功提交表单
    xsrf = Selector(response).xpath('//input[@name="_xsrf"]/@value').extract()[0]
    print xsrf
    #FormRequeset.from_response是Scrapy提供的一个函数, 用于post表单
    #登陆成功后, 会调用after_login回调函数
    return [FormRequest.from_response(response,  #"http://www.zhihu.com/login",
              meta = {'cookiejar' : response.meta['cookiejar']}, #注意这里cookie的获取
              headers = self.headers,
              formdata = {
              '_xsrf': xsrf,
              'email': '123456',
              'password': '123456'
              },
              callback = self.after_login,
              dont_filter = True
              )]

登入後複製

四、偽裝頭部
有時候登陸網站需要進行頭部偽裝, 例如增加防盜鏈的頭部, 還有模擬伺服器登陸

201672183151347.png (2136×604)

為了保險, 我們可以在頭部中填充更多的字段, 如下

  headers = {
  "Accept": "*/*",
  "Accept-Encoding": "gzip,deflate",
  "Accept-Language": "en-US,en;q=0.8,zh-TW;q=0.6,zh;q=0.4",
  "Connection": "keep-alive",
  "Content-Type":" application/x-www-form-urlencoded; charset=UTF-8",
  "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36",
  "Referer": "http://www.zhihu.com/"
  }
登入後複製

在scrapy中Request和FormRequest初始化的時候都有一個headers字段, 可以自定義頭部, 這樣我們可以添加headers字段

形成最終版的登陸函數

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.selector import Selector
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.http import Request, FormRequest
from zhihu.items import ZhihuItem



class ZhihuSipder(CrawlSpider) :
  name = "zhihu"
  allowed_domains = ["www.zhihu.com"]
  start_urls = [
    "http://www.zhihu.com"
  ]
  rules = (
    Rule(SgmlLinkExtractor(allow = ('/question/\d+#.*?', )), callback = 'parse_page', follow = True),
    Rule(SgmlLinkExtractor(allow = ('/question/\d+', )), callback = 'parse_page', follow = True),
  )
  headers = {
  "Accept": "*/*",
  "Accept-Encoding": "gzip,deflate",
  "Accept-Language": "en-US,en;q=0.8,zh-TW;q=0.6,zh;q=0.4",
  "Connection": "keep-alive",
  "Content-Type":" application/x-www-form-urlencoded; charset=UTF-8",
  "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36",
  "Referer": "http://www.zhihu.com/"
  }

  #重写了爬虫类的方法, 实现了自定义请求, 运行成功后会调用callback回调函数
  def start_requests(self):
    return [Request("https://www.zhihu.com/login", meta = {'cookiejar' : 1}, callback = self.post_login)]

  #FormRequeset出问题了
  def post_login(self, response):
    print 'Preparing login'
    #下面这句话用于抓取请求网页后返回网页中的_xsrf字段的文字, 用于成功提交表单
    xsrf = Selector(response).xpath('//input[@name="_xsrf"]/@value').extract()[0]
    print xsrf
    #FormRequeset.from_response是Scrapy提供的一个函数, 用于post表单
    #登陆成功后, 会调用after_login回调函数
    return [FormRequest.from_response(response,  #"http://www.zhihu.com/login",
              meta = {'cookiejar' : response.meta['cookiejar']},
              headers = self.headers, #注意此处的headers
              formdata = {
              '_xsrf': xsrf,
              'email': '1095511864@qq.com',
              'password': '123456'
              },
              callback = self.after_login,
              dont_filter = True
              )]

  def after_login(self, response) :
    for url in self.start_urls :
      yield self.make_requests_from_url(url)

  def parse_page(self, response):
    problem = Selector(response)
    item = ZhihuItem()
    item['url'] = response.url
    item['name'] = problem.xpath('//span[@class="name"]/text()').extract()
    print item['name']
    item['title'] = problem.xpath('//h2[@class="zm-item-title zm-editable-content"]/text()').extract()
    item['description'] = problem.xpath('//div[@class="zm-editable-content"]/text()').extract()
    item['answer']= problem.xpath('//div[@class=" zm-editable-content clearfix"]/text()').extract()
    return item

登入後複製

五、Item類與抓取間隔
完整的知乎爬蟲程式碼連結

from scrapy.item import Item, Field


class ZhihuItem(Item):
  # define the fields for your item here like:
  # name = scrapy.Field()
  url = Field() #保存抓取问题的url
  title = Field() #抓取问题的标题
  description = Field() #抓取问题的描述
  answer = Field() #抓取问题的答案
  name = Field() #个人用户的名称

登入後複製

設定抓取間隔, 存取由於爬蟲的過快抓取, 引發網站的發爬蟲機制, 在setting.py中設定

BOT_NAME = 'zhihu'

SPIDER_MODULES = ['zhihu.spiders']
NEWSPIDER_MODULE = 'zhihu.spiders'
DOWNLOAD_DELAY = 0.25  #设置下载间隔为250ms

登入後複製

更多設定可以查看官方文件

抓取結果(只是截取了其中很少一部分)

...
 'url': 'http://www.zhihu.com/question/20688855/answer/16577390'}
2014-12-19 23:24:15+0800 [zhihu] DEBUG: Crawled (200) <GET http://www.zhihu.com/question/20688855/answer/15861368> (referer: http://www.zhihu.com/question/20688855/answer/19231794)
[]
2014-12-19 23:24:15+0800 [zhihu] DEBUG: Scraped from <200 http://www.zhihu.com/question/20688855/answer/15861368>
  {'answer': [u'\u9009\u4f1a\u8ba1\u8fd9\u4e2a\u4e13\u4e1a\uff0c\u8003CPA\uff0c\u5165\u8d22\u52a1\u8fd9\u4e2a\u884c\u5f53\u3002\u8fd9\u4e00\u8def\u8d70\u4e0b\u6765\uff0c\u6211\u53ef\u4ee5\u5f88\u80af\u5b9a\u7684\u544a\u8bc9\u4f60\uff0c\u6211\u662f\u771f\u7684\u559c\u6b22\u8d22\u52a1\uff0c\u70ed\u7231\u8fd9\u4e2a\u884c\u4e1a\uff0c\u56e0\u6b64\u575a\u5b9a\u4e0d\u79fb\u5730\u5728\u8fd9\u4e2a\u884c\u4e1a\u4e2d\u8d70\u4e0b\u53bb\u3002',
        u'\u4e0d\u8fc7\u4f60\u8bf4\u6709\u4eba\u4ece\u5c0f\u5c31\u559c\u6b22\u8d22\u52a1\u5417\uff1f\u6211\u89c9\u5f97\u51e0\u4e4e\u6ca1\u6709\u5427\u3002\u8d22\u52a1\u7684\u9b45\u529b\u5728\u4e8e\u4f60\u771f\u6b63\u61c2\u5f97\u5b83\u4e4b\u540e\u3002',
        u'\u901a\u8fc7\u5b83\uff0c\u4f60\u53ef\u4ee5\u5b66\u4e60\u4efb\u4f55\u4e00\u79cd\u5546\u4e1a\u7684\u7ecf\u8425\u8fc7\u7a0b\uff0c\u4e86\u89e3\u5176\u7eb7\u7e41\u5916\u8868\u4e0b\u7684\u5b9e\u7269\u6d41\u3001\u73b0\u91d1\u6d41\uff0c\u751a\u81f3\u4f60\u53ef\u4ee5\u638c\u63e1\u5982\u4f55\u53bb\u7ecf\u8425\u8fd9\u79cd\u5546\u4e1a\u3002',
        u'\u5982\u679c\u5bf9\u4f1a\u8ba1\u7684\u8ba4\u8bc6\u4ec5\u4ec5\u505c\u7559\u5728\u505a\u5206\u5f55\u8fd9\u4e2a\u5c42\u9762\uff0c\u5f53\u7136\u4f1a\u89c9\u5f97\u67af\u71e5\u65e0\u5473\u3002\u5f53\u4f60\u5bf9\u5b83\u7684\u8ba4\u8bc6\u8fdb\u5165\u5230\u6df1\u5c42\u6b21\u7684\u65f6\u5019\uff0c\u4f60\u81ea\u7136\u5c31\u4f1a\u559c\u6b22\u4e0a\u5b83\u4e86\u3002\n\n\n'],
   'description': [u'\u672c\u4eba\u5b66\u4f1a\u8ba1\u6559\u80b2\u4e13\u4e1a\uff0c\u6df1\u611f\u5176\u67af\u71e5\u4e4f\u5473\u3002\n\u5f53\u521d\u662f\u51b2\u7740\u5e08\u8303\u4e13\u4e1a\u62a5\u7684\uff0c\u56e0\u4e3a\u68a6\u60f3\u662f\u6210\u4e3a\u4e00\u540d\u8001\u5e08\uff0c\u4f46\u662f\u611f\u89c9\u73b0\u5728\u666e\u901a\u521d\u9ad8\u4e2d\u8001\u5e08\u5df2\u7ecf\u8d8b\u4e8e\u9971\u548c\uff0c\u800c\u987a\u6bcd\u4eb2\u5927\u4eba\u7684\u610f\u9009\u4e86\u8fd9\u4e2a\u4e13\u4e1a\u3002\u6211\u559c\u6b22\u4e0a\u6559\u80b2\u5b66\u7684\u8bfe\uff0c\u5e76\u597d\u7814\u7a76\u5404\u79cd\u6559\u80b2\u5fc3\u7406\u5b66\u3002\u4f46\u4f1a\u8ba1\u8bfe\u4f3c\u4e4e\u662f\u4e3b\u6d41\u3001\u54ce\u3002\n\n\u4e00\u76f4\u4e0d\u559c\u6b22\u94b1\u4e0d\u94b1\u7684\u4e13\u4e1a\uff0c\u6240\u4ee5\u5f88\u597d\u5947\u5927\u5bb6\u9009\u4f1a\u8ba1\u4e13\u4e1a\u5230\u5e95\u662f\u51fa\u4e8e\u4ec0\u4e48\u76ee\u7684\u3002\n\n\u6bd4\u5982\u8bf4\u5b66\u4e2d\u6587\u7684\u4f1a\u8bf4\u4ece\u5c0f\u559c\u6b22\u770b\u4e66\uff0c\u4f1a\u6709\u4ece\u5c0f\u559c\u6b22\u4f1a\u8ba1\u501f\u554a\u8d37\u554a\u7684\u7684\u4eba\u5417\uff1f'],
   'name': [],
   'title': [u'\n\n', u'\n\n'],
   'url': 'http://www.zhihu.com/question/20688855/answer/15861368'}
...
登入後複製

六、有問題

  • Rule設計不能實現全網站抓取, 只是設定了簡單的問題的抓取
  • Xpath設定不嚴謹, 需要重新思考
  • Unicode編碼應該要轉換成UTF-8

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles