首頁 > 後端開發 > php教程 > nginx的資料結構2-自己動手重寫紅黑樹

nginx的資料結構2-自己動手重寫紅黑樹

WBOY
發布: 2016-07-30 13:31:21
原創
1002 人瀏覽過

    費話不多說,上重寫代碼,這次姑且用英語寫的註釋當複習英語了。

    rbtree.h:

/*
 * Copyright (C) Bipedal Bit
 * Verson 1.0.0.1
 */

#ifndef _RBTREE_H_INCLUDED_
#define _RBTREE_H_INCLUDED_

/* the node structure of the red-black tree */
typedef struct rbtree_node_s rbtree_node_t;
/* Using type int means its range is -0x7fffffff-1~0x7fffffff. */
typedef int rbtree_key_t;
/* Abstract type is complicated to achieve with C so I use char* instead. */
typedef char* rbtree_data_t;

struct rbtree_node_s
{
	/* key of the node */
	rbtree_key_t	key;
	/* pointer of the parent of the node */
	rbtree_node_t*	parent;
	/* pointer of the left kid of the node */
	rbtree_node_t*	left;
	/* pointer of the right kid of the node */
	rbtree_node_t*	right;
	/* color of the node */
	unsigned char	color;
	/* pointer of the value of the node corresponding to the key */
	rbtree_data_t	value;
};

/* the tree object stucture of the red-black tree */
typedef struct rbtree_s rbtree_t;
/* foundational insert function pointer*/
typedef void (*rbtree_insert_p) (rbtree_t* root, rbtree_node_t* node);

struct rbtree_s
{
	/* the pointer of the root node of the tree */
	rbtree_node_t* root;
	/* black leaf nodes as sentinel */
	rbtree_node_t* sentinel;
	/* the polymorphic insert function pointer */
	rbtree_insert_p insert;
};

/* macros */
#define rbtree_init(tree, s, i)		\
rbtree_sentinel_init(s);			\
(tree)->root = s;				\
(tree)->sentinel = s;			\
(tree)->insert = i

#define rbtree_red(node)	((node)->color = 1)
#define rbtree_black(node)	((node)->color = 0)
#define rbtree_is_red(node)	((node)->color)
#define rbtree_is_black(node)	(!rbtree_is_red(node))
 /* copy n2's color to n1 */
#define rbtree_copy_color(n1, n2)	(n1->color = n2->color)
/* sentinel must be black cuz it's leaf node */
#define rbtree_sentinel_init(node)	rbtree_black(node)

/* statements of public methods */
void rbtree_insert_value(rbtree_t* tree, rbtree_node_t* node);
void rbtree_insert(rbtree_t* tree, rbtree_node_t* node);
void rbtree_delete(rbtree_t* tree, rbtree_node_t* node);
rbtree_node_t* rbtree_find(rbtree_t* tree, rbtree_key_t key);

#endif	/* _RBTREE_H_INCLUDED_ */
登入後複製

    看過nginx源碼的有心人會發現,我的頭檔相對於ngx_rbree.h改動不大,非常像。

    關鍵的rbtree.c:

/*
 * Copyright (C) Bipedal Bit
 * Verson 1.0.0.1
 */

#include <stddef.h>
#include "rbtree.h"

/* inline methods */
/* get the node with the minimum key in a subtree of the red-black tree */
static inline rbtree_node_t*
rbtree_subtree_min(rbtree_node_t* node, rbtree_node_t* sentinel)
{
    while(node->left != sentinel)
    {
        node = node->left;
    }

    return node;
}

/* replace the node "node" in the tree with node "tmp" */
static inline void rbtree_replace(rbtree_t* tree,
    rbtree_node_t* node, rbtree_node_t* tmp)
{
    /* upward: p[node] <- p[tmp] */
&#160;&#160; &#160;tmp->parent = node->parent;

    if (node == tree->root)
    {
        tree->root = tmp;
    }
    else if (node == node->parent->left)
    {
        /* downward: left[p[node]] <- tmp */
&#160;&#160; &#160;&#160;&#160; &#160;node->parent->left = tmp;
    }
    else
    {
        /* downward: right[p[node]] <- tmp */
&#160;&#160; &#160;&#160;&#160; &#160;node->parent->right = tmp;
    }

    node->parent = tmp;
}

/* change the topologic structure of the tree keeping the order of the nodes */
static inline void rbtree_left_rotate(rbtree_t* tree, rbtree_node_t* node)
{
    /* node as the var x in CLRS while tmp as the var y */
    rbtree_node_t* tmp = node->right;

    /* replace y with left[y] */
    /* downward: right[x] <- left[y] */
&#160;&#160; &#160;node->right = tmp->left;
    /* if left[[y] is not NIL it has a parent */
    if (tmp->left != tree->sentinel)
    {
        /* upward: p[left[y]] <- x */
&#160;&#160; &#160;&#160;&#160; &#160;tmp->left->parent = node;
    }

    /* replace x with y */
    rbtree_replace(tree, node, tmp);
    tmp->left = node;
}

static inline void rbtree_right_rotate(rbtree_t* tree, rbtree_node_t* node)
{
    rbtree_node_t* tmp = node->left;

    /* replace y with right[y] */
    node->left = tmp->right;
    if (tmp->right != tree->sentinel)
    {
        tmp->right->parent = node;
    }

    /* replace x with y */
    rbtree_replace(tree, node, tmp);
    tmp->right = node;
}

/* static methods */
/* fix the red-black tree after the new node inserted */
static void rbtree_insert_fixup(rbtree_t* tree, rbtree_node_t* node)
{
    while(rbtree_is_red(node->parent))
    {
        if (node->parent == node->parent->parent->left)
        {
            /* case 1: node's uncle is red */
            if (rbtree_is_red(node->parent->parent->right))
            {
                rbtree_black(node->parent);
                rbtree_black(node->parent->parent->right);
                rbtree_red(node->parent->parent);
                node = node->parent->parent;
                /* Then we can consider the whole subtree */
                /* which is represented by the new "node" as the "node" before */
                /* and keep looping till "node" become the root. */
            }
            /* case 2: node's uncle is black */
            else
            {
                /* ensure node is the left kid of its parent */
                if (node == node->parent->right)
                {
                    node = node->parent;
                    rbtree_left_rotate(tree, node);
                }
                /* case 2 -> case 1 */
                rbtree_black(node->parent);
                rbtree_red(node->parent->parent);
                rbtree_right_rotate(tree, node->parent->parent);
            }
        }
        /* same as the "if" clause before with "left" and "right" exchanged */
        else
        {
            if (rbtree_is_red(node->parent->parent->left))
            {
                rbtree_black(node->parent);
                rbtree_black(node->parent->parent->left);
                rbtree_red(node->parent->parent);
                node = node->parent->parent;
            }
            else
            {
                if (node == node->parent->left)
                {
                    node = node->parent;
                    rbtree_right_rotate(tree, node);
                }
                rbtree_black(node->parent);
                rbtree_red(node->parent->parent);
                rbtree_left_rotate(tree, node->parent->parent);
            }
        }
    }
    /* ensure the root node being black */
    rbtree_black(tree->root);
}

static void rbtree_delete_fixup(rbtree_t* tree, rbtree_node_t* node)
{
    rbtree_node_t* brother = NULL;

    while(node != tree->root && rbtree_is_black(node))
    {
        if (node == node->parent->left)
        {
            brother = node->parent->right;
            if (rbtree_is_red(brother))
            {
                rbtree_black(brother);
                rbtree_red(node->parent);
                rbtree_left_rotate(tree, node->parent);
                /* update brother after topologic change of the tree */
                brother = node->parent->right;
            }

            if (rbtree_is_black(brother->left) && rbtree_is_black(brother->right))
            {
                rbtree_red(brother);
                /* go upward and keep on fixing color */
                node = node->parent;
            }
            else
            {
                if (rbtree_is_black(brother->right))
                {
                    rbtree_black(brother->left);
                    rbtree_red(brother);
                    rbtree_right_rotate(tree, brother);
                    /* update brother after topologic change of the tree */
                    brother = node->parent->right;
                }
                rbtree_copy_color(brother, node->parent);
                rbtree_black(node->parent);
                rbtree_black(brother->right);
                rbtree_left_rotate(tree, node->parent);
                /* end the loop and ensure root is black */
                node = tree->root;
            }
        }
        /* same as the "if" clause before with "left" and "right" exchanged */
        else
        {
            brother = node->parent->left;
            if (rbtree_is_red(brother))
            {
                rbtree_black(brother);
                rbtree_red(node->parent);
                rbtree_left_rotate(tree, node->parent);
                brother = node->parent->left;
            }

            if (rbtree_is_black(brother->left) && rbtree_is_black(brother->right))
            {
                rbtree_red(brother);
                node = node->parent;
            }
            else
            {
                if (rbtree_is_black(brother->left))
                {
                    rbtree_black(brother->right);
                    rbtree_red(brother);
                    rbtree_right_rotate(tree, brother);
                    brother = node->parent->left;
                }
                rbtree_copy_color(brother, node->parent);
                rbtree_black(node->parent);
                rbtree_black(brother->left);
                rbtree_left_rotate(tree, node->parent);
                node = tree->root;
            }
        }
    }

    rbtree_black(node);
}

/* public methods */
void rbtree_insert_value(rbtree_t* tree, rbtree_node_t* node)
{
    /* Using ** to know wether the new node will be a left kid */
    /* or a right kid of its parent node. */
    rbtree_node_t** tmp = &tree->root;
    rbtree_node_t* parent;

    while(*tmp != tree->sentinel)
    {
        parent = *tmp;
        tmp = (node->key < parent->key) ? &parent->left : &parent->right;
    }

    /* The pointer knows wether the node should be on the left side */
    /* or on the right one. */
    *tmp = node;
    node->parent = parent;
    node->left = tree->sentinel;
    node->right = tree->sentinel;
    rbtree_red(node);
}

void rbtree_insert(rbtree_t* tree, rbtree_node_t* node)
{
    rbtree_node_t* sentinel = tree->sentinel;

    /* if the tree is empty */
    if (tree->root == sentinel)
    {
        tree->root = node;
        node->parent = sentinel;
        node->left = sentinel;
        node->right = sentinel;
        rbtree_black(node);

        return;
    }

    /* generally */
    tree->insert(tree, node);
    rbtree_insert_fixup(tree, node);
}

void rbtree_delete(rbtree_t* tree, rbtree_node_t* node)
{
    rbtree_node_t* sentinel = tree->sentinel;
    /* wether "node" is on the left side or the right one */
    rbtree_node_t** ptr_to_node = NULL;
    /* "cover" is the node which is going to cover "node" */
    rbtree_node_t* cover = NULL;
    /* wether we lossing a red node on the edge of the tree */
    int loss_red = rbtree_is_red(node);
    int is_root = (node == tree->root);

    /* get "cover" & "loss_red"  */
    /* sentinel in "node"'s kids */
    if (node->left == sentinel)
    {
        cover = node->right;
    }
    else if (node->right == sentinel)
    {
        cover = node->left;
    }
    /* "node"'s kids are both non-sentinel */
    else
    {
        /* update "node" & "loss_red" & "is_root" & "cover" */
        cover = rbtree_subtree_min(node->right, sentinel);
        node->key = cover->key;
        node->value = cover->value;
        node = cover;
        loss_red = rbtree_is_red(node);
        is_root = 0;
        /* move "cover"'s kids */
        /* "cover" can only be a left kid */
        /* and can only have a right non-sentinel kid */
        /* because of function "rbtree_subtree_min" */
        cover = node->right;
    }

    if (is_root)
    {
        /* update root */
        tree->root = cover;
    }
    else
    {
        /* downward link */
        if (node == node->parent->left)
        {
            node->parent->left = cover;
        }
        else
        {
            node->parent->right = cover;
        }
    }
    /* upward link */
    cover->parent = node->parent;
    /* "cover" may be a sentinel */
    if (cover != sentinel)
    {
        /* set "cover" */
        cover->left = node->left;
        cover->right = node->right;
        rbtree_copy_color(cover, node);
    }

    /* clear "node" since it's useless */
    node->key = -1;
    node->parent = NULL;
    node->left = NULL;
    node->right = NULL;
    node->value = NULL;

    if (loss_red)
    {
        return;
    }

    /* When lossing a black node on edge */
    /* the fifth rule of red-black tree will be broke. */
    /* So the tree need to be fixed. */
    rbtree_delete_fixup(tree, cover);
}

/* find the node in the tree corresponding to the given key value */
rbtree_node_t* rbtree_find(rbtree_t* tree, rbtree_key_t key)
{
    rbtree_node_t* tmp = tree->root;
    int step_cnt = 0;

    /* search the binary tree */
    while(tmp != tree->sentinel)
    {
        /* next line is just fot test */
        // step_cnt++;
        if(key == tmp->key)
        {
            /* next line is just for test */
            // printf("step count: %d, color: %s, ", step_cnt, rbtree_is_red(tmp) ? "red" : "black");
            return tmp;
        }

        tmp = (key < tmp->key) ? tmp->left : tmp->right;
    }

    return NULL;
}
 
登入後複製

    雖然明白nginx源碼中100+行的長函數體也是一種避免太多函數呼叫增加時間空間開銷的優化,我還是把所有函數都分類成100行以下。增加可讀性是一方面,也可能有點強迫症。之後會擴展幾個統計方法,像max、min和mid,還會擴展一個遍歷方法。

    以下是呼叫測試,test.c:

#include <stdio.h>
#include "rbtree.h"

int main(int argc, char const *argv[])
{
    rbtree_t t = {};
    rbtree_node_t s = {};
    rbtree_init(&t, &s, rbtree_insert_value);

    const int cnt = 10;
    const int max_len = 15;

#define TEST_VALUES {"apple", "banana", "cherry", "grape", "lemon", "mango", "pear", "pineapple", "strawberry", "watermelon"}

    /* for gcc */
    char* v[] = TEST_VALUES;
    /* for g++ */
    // char v[][max_len] = TEST_VALUES;

    rbtree_node_t n[cnt];
    int i;
    for (i = 0; i < cnt; i++)
&#160;&#160; &#160;{
&#160;&#160; &#160;&#160;&#160; &#160;n[i].key = i+1;
&#160;&#160; &#160;&#160;&#160; &#160;n[i].value = v[i];
&#160;&#160; &#160;&#160;&#160; &#160;rbtree_insert(&t, &n[i]);
&#160;&#160; &#160;}

&#160;&#160; &#160;rbtree_node_t* p[cnt];

&#160;&#160; &#160;for (i = 1; i <= cnt; i++)
&#160;&#160; &#160;{
&#160;&#160; &#160;&#160;&#160; &#160;printf("key: %d\n", i);
&#160;&#160; &#160;&#160;&#160; &#160;p[i] = rbtree_find(&t, i);
&#160;&#160; &#160;&#160;&#160; &#160;printf("value: %s\n", (p[i] != NULL) ? p[i]->value : "?");
    }

    rbtree_delete(&t, &n[5]);

    printf("\nafter delete 6->mango:\n\n");

    for (i = 1; i <= cnt; i++)
&#160;&#160; &#160;{
&#160;&#160; &#160;&#160;&#160; &#160;printf("key: %d\n", i);
&#160;&#160; &#160;&#160;&#160; &#160;p[i] = rbtree_find(&t, i);
&#160;&#160; &#160;&#160;&#160; &#160;printf("value: %s\n", (p[i] != NULL) ? p[i]->value : "?");
    }

    return 0;
}
登入後複製

    解開rbtree_find方法裡的測試行註釋,順利執行:

key: 1
step count: 3, color: black, value: apple
key: 2
step count: 2, color: black, value: banana
key: 3
step count: 3, color: black, value: cherry
key: 4
step count: 1, color: black, value: grape
key: 5
step count: 3, color: black, value: lemon
key: 6
step count: 2, color: black, value: mango
key: 7
step count: 4, color: black, value: pear
key: 8
step count: 3, color: red, value: pineapple
key: 9
step count: 4, color: black, value: strawberry
key: 10
step count: 5, color: red, value: watermelon

after delete 6->mango:

key: 1
step count: 3, color: black, value: apple
key: 2
step count: 2, color: black, value: banana
key: 3
step count: 3, color: black, value: cherry
key: 4
step count: 1, color: black, value: grape
key: 5
step count: 3, color: black, value: lemon
key: 6
value: ?
key: 7
step count: 2, color: black, value: pear
key: 8
step count: 4, color: black, value: pineapple
key: 9
step count: 3, color: red, value: strawberry
key: 10
step count: 4, color: black, value: watermelon
登入後複製
  樹示意圖:

    下面我們來做個大量資料的壓力測試,注意把rbtree_find方法裡的測試行註解掉,不然後果恐怕會比較嚇人:🠎

ref

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "rbtree.h"

int main(int argc, char const *argv[])
{
    double duration;
    double room;

    rbtree_t t = {};
    rbtree_node_t s = {};
    rbtree_init(&t, &s, rbtree_insert_value);

    const int cnt = 1<<20;
    const int max_len = 15;

#define TEST_VALUES {"apple", "banana", "cherry", "grape", "lemon", "mango", "pear", "pineapple", "strawberry", "watermelon"}

    /* for gcc */
    char* v[] = TEST_VALUES;
    /* for g++ */
    // char v[][max_len] = TEST_VALUES;

    /* Default stack size in Ubuntu Kylin 14.04 is 8MB. */
    /* It's not enough. So I use memory in heap which offers a lot larger room. */
    rbtree_node_t* n = (rbtree_node_t*)calloc(cnt, sizeof(rbtree_node_t));
    int i;

    long time1 = clock();

    for (i = 0; i < cnt; i++)
    {
        n[i].key = i+1;
        n[i].value = v[i%10];
        rbtree_insert(&t, &n[i]);
    }

    long time2 = clock();
    room = 48.0*cnt/(1<<20);
    duration = (double)(time2 - time1) / CLOCKS_PER_SEC;
    printf("Inserting %d nodes costs %.2fMB and spends %f seconds.\n", cnt, room, duration);

    const int search_cnt = 1<<10;
    srand( (unsigned int)time(0) );
    for( i = 0 ; i < search_cnt ; i++ )
    {
        rbtree_find(&t, (rand()%cnt)+1);
    }

    long time3 = clock();
    duration = (double)(time3 - time2) / CLOCKS_PER_SEC;
    printf("Searching %d nodes among %d spends %f seconds.\n", search_cnt, cnt, duration);

    const int delete_cnt = 1<<10;
    int nums[delete_cnt];
    int num;
    /* Let's hash! */
    char* mark = (char*)calloc(cnt, sizeof(char));
    memset(mark, 0, cnt*sizeof(char));
    for(i = 0; i < delete_cnt; i++)
    {
        for(;;)
        {
            num = rand()%cnt;
            if (mark[num] == 0)
            {
                mark[num] = 1;
                nums[i] = num;
                break;
            }
        }
    }

    long time4 = clock();
    duration = (double)(time4 - time3) / CLOCKS_PER_SEC;
    printf("Hash %d times spends %f seconds.\n", delete_cnt, duration);

    for(i = 0; i < delete_cnt; i++)
    {
        rbtree_delete(&t, &n[nums[i]]);
    }

    long time5 = clock();
    duration = (double)(time5 - time4) / CLOCKS_PER_SEC;
    printf("Deleting %d nodes among %d spends %f seconds.\n", delete_cnt, cnt, duration);
    free(mark);
    free(n);

    return 0;
}
登入後複製
    刪除比查找還快,耗時只有哈希查找的兩倍多點,上百萬的插入也耗時不足半秒,嗯我還挺滿意的。
    寫統計和遍歷方法去了。


版權聲明:本文為部落客原創文章,未經部落客允許不得轉載。

以上就介紹了nginx的資料結構2-自己動手重寫紅黑樹,包含了方面的內容,希望對PHP教學有興趣的朋友有所幫助。

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板