首頁 > 後端開發 > php教程 > mongodb的mapreduce用法及php範例程式碼

mongodb的mapreduce用法及php範例程式碼

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
發布: 2016-08-08 09:30:30
原創
1306 人瀏覽過
MongoDB雖然不像我們常用的mysql,sqlserver,oracle等關係型資料庫有group by函數那麼方便分組,但是MongoDB要實作分組也有3個方法: * Mongodb三種分組方式: * 1、group (先篩選再分組,不支援分片,對資料量有所限制,效率不高) * 2、mapreduce(基於js引擎,單執行緒執行,效率較低,適合用做後台統計等) * 3、aggregate(推薦) (如果你的PHP的mongodb驅動版本需>=1.3.0,推薦你使用aggregate,性能要高很多,並且使用上要簡單些,不過1.3的目前還不支持帳戶認證模式,可以通過 http://pecl.php.net/package/mongo 查看更新日誌和Bug)下面就來看下mapreduce方式:Mongodb官網對MapReduce介紹:Map/reduce in MongoDB is useful for batch processing of data and aggregation operations. It is similar in spirit to using something like Hadoop with all input coming from a collection and output going to a collection. Often, in a situation where you would have used GROUP BY in SQL, map/reduce is the right tool in MongoDB.大致意思是: Mongodb中的Map/reduce主要是用來對資料進行批次處理和聚合操​​作,有點類似於使用Hadoop對集合資料進行處理,所有輸入資料都是從集合中取得,而MapReduce後輸出的資料也會寫入集合中。通常類似我們在SQL中使用Group By語句。 使用MapReduce要實作兩個函數:Map和Reduce。 Map函數呼叫emit(key,value)遍歷集合中所有的記錄,將key與value傳給Reduce函數處理。 Map函數和Reduce函數是使用Javascript編寫的,並且可以透過db.runCommand或mapreduce指令來執行MapReduce操作。
MapReduce指令如下:db.runCommand( { mapreduce : <collection>, map : <mapfunction>, reduce : <reducefunction> [, query : <queryfilterobject>] [, sort : <sortthequery.usefulforoptimization>] [, limit : <numberofobjectstoreturnfromcollection>] [, out : <output-collectionname>] [, keeptemp: <true|false>] [, finalize : <finalizefunction>] [, scope : <objectwherefieldsgointojavascriptglobalscope >] [, verbose : true] } );

參數說明:

紙庫

reduce:統計函數

query:目標記錄過濾

sort:對目標記錄排序

limit:限制目標記錄數量

out:統計結果存放集合(如果不指定則使用臨時集合,在客戶端斷開啟後自動刪除)

keeptemp:是否保留臨時集合

finalize:最終處理函數(對reduce返回結果執行最終整理後存入結果集合)

scope:向map、reduce、finalize導入外部變數

verbose :顯示詳細的時間統計資料


map函數 map函數呼叫當前物件,並處裡物件的屬性,傳值給reduce,map方法使用this來操作目前物件,最少呼叫一次key,value)方法來向reduce提供參數,其中emit的key為最終資料的id。
 
reduce函数 
接收一个值和数组,根据需要对数组进行合并分组等处理,reduce的key就是emit(key,value)的key,value_array是同个key对应的多个value数组。 
Finalize函数 
此函数为可选函数,可在执行完map和reduce后执行,对最后的数据进行统一处理。 
看完基本介绍,我们再来看一个实例:已知集合feed,测试数据如下:{ "_id": ObjectId("50ccb3f91e937e2927000004"), "feed_type": 1, "to_user": 234, "time_line": "2012-12-16 01:26:00" }{ "_id": ObjectId("50ccb3ef1e937e0727000004"), "feed_type": 8, "to_user": 123, "time_line": "2012-12-16 01:26:00" }{ "_id": ObjectId("50ccb3e31e937e0a27000003"), "feed_type": 1, "to_user": 123, "time_line": "2012-12-16 01:26:00" }{ "_id": ObjectId("50ccb3d31e937e0927000001"), "feed_type": 1, "to_user": 123, "time_line": "2012-12-16 01:26:00" }
我们按动态类型feed_type和用户to_user进行分组统计,实现结果:
feed_type to_user cout
1 234 1
8 123 1
1 123 2







实现代码://编写map函数$map = ' function() { var key = {to_user:this.to_user,feed_type:this.feed_type}; var value = {count:1}; emit(key,value); } '; //reduce 函数$reduce = ' function(key, values) { var ret = {count:0}; for(var i in values) { ret.count += 1; } return ret; }'; //查询条件$query = null; //本实例中没有查询条件,设置为null$mongo = new Mongo('mongodb://root:root@127.0.0.1: 28017/'); //链接mongodb,账号和密码为root,root$instance = $mongo->selectDB("testdb"); //执行此命令后,会创建feed_temp_res的临时集合,并将统计后的数据放在该集合中$cmd = $instance->command(array( 'mapreduce' => 'feed', 'map' => $map, 'reduce' => $reduce, 'query' => $query, 'out' => 'feed_temp_res' )); //查询临时集合中的统计数据,验证统计结果是否和预期结果一致$cursor = $instance->selectCollection('feed_temp_res')->find(); $result = array(); try { while ($cursor->hasNext()) { $result[] = $cursor->getNext(); } } catch (MongoConnectionException $e) { echo$e->getMessage(); } catch (MongoCursorTimeoutException $e) { echo$e->getMessage(); } catch(Exception$e){ echo$e->getMessage(); } //test var_dump($result);
下面是输出的结果,和预期结果一致{ "_id": { "to_user": 234, "feed_type": 1 }, "value": { "count": 1 }}{ "_id": { "to_user": 123, "feed_type": 8 }, "value": { "count": 1 }}{ "_id": { "to_user": 123, "feed_type": 1 }, "value": { "count": 2 }}
以上只是简单的统计实现,你可以实现复杂的条件统计编写复杂的reduce函数,可以增加查询条件,排序等等。附上mapReduce数据库处理函数(简单封装)/** * mapReduce分组 * * @param string $table_name 表名(要操作的目标集合名) * @param string $map 映射函数(生成键值对序列,作为 reduce 函数参数) * @param string $reduce 统计处理函数 * @param array $query 过滤条件 如:array('uid'=>123) * @param array $sort 排序 * @param number $limit 限制的目标记录数 * @param string $out 统计结果存放集合 (不指定则使用tmp_mr_res_$table_name, 1.8以上版本需指定) * @param bool $keeptemp 是否保留临时集合 * @param string $finalize 最终处理函数 (对reduce返回结果进行最终整理后存入结果集合) * @param string $scopemap、reduce、finalize 导入外部js变量 * @param bool $jsMode 是否减少执行过程中BSON和JS的转换,默认true(注:false时 BSON-->JS-->map-->BSON-->JS-->reduce-->BSON,可处理非常大的mapreduce,//true时BSON-->js-->map-->reduce-->BSON) * @param bool $verbose 是否产生更加详细的服务器日志 * @param bool $returnresult 是否返回新的结果集 * @param array &$cmdresult 返回mp命令执行结果 array("errmsg"=>"","code"=>13606,"ok"=>0) ok=1表示执行命令成功 * @return*/ function mapReduce($table_name,$map,$reduce,$query=null,$sort=null,$limit=0,$out='',$keeptemp=true,$finalize=null,$scope=null,$jsMode=true,$verbose=true,$returnresult=true,&$cmdresult){ if(empty($table_name) || empty($map) || empty($reduce)){ return null; } $map = new MongoCode($map); $reduce = new MongoCode($reduce); if(empty($out)){ $out = 'tmp_mr_res_'.$table_name; } $cmd = array( 'mapreduce' => $table_name, 'map' => $map, 'reduce' => $reduce, 'out' =>$out ); if(!empty($query) && is_array($query)){ array_push($cmd, array('query'=>$query)); } if(!empty($sort) && is_array($sort)){ array_push($cmd, array('sort'=>$query)); } if(!empty($limit) && is_int($limit) && $limit>0){ array_push($cmd, array('limit'=>$limit)); } if(!empty($keeptemp) && is_bool($keeptemp)){ array_push($cmd, array('keeptemp'=>$keeptemp)); } if(!empty($finalize)){ $finalize = new Mongocode($finalize); array_push($cmd, array('finalize'=>$finalize)); } if(!empty($scope)){ array_push($cmd, array('scope'=>$scope)); } if(!empty($jsMode) && is_bool($jsMode)){ array_push($cmd, array('jsMode'=>$jsMode)); } if(!empty($verbose) && is_bool($verbose)){ array_push($cmd, array('verbose'=>$verbose)); } $dbname = $this->curr_db_name; $cmdresult = $this->mongo->$dbname->command($cmd); if($returnresult){ if($cmdresult && $cmdresult['ok']==1){ $result = $this->find($out, array()); } } if($keeptemp==false){ //删除集合 $this->mongo->$dbname->dropCollection($out); } return$result; }
MongoDB官方网站介绍:MapReduce介绍  http://docs.mongodb.org/manual/core/map-reduce/Aggregation介绍  http://docs.mongodb.org/manual/aggregation/ 

以上就介绍了mongodb的mapreduce用法及php示例代码,包括了方面的内容,希望对PHP教程有兴趣的朋友有所帮助。

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板