紹
在Python中,所有以“__”雙下劃線包起來的方法,都統稱為“Magic Method”,例如類的初始化方法 __init__ ,Python中所有的魔術方法均在官方文檔中有相應描述,但是對於官方的描述比較混亂而且組織比較鬆散。很難找到有一個例子。
構造和初始化
每個Pythoner都知道一個最基本的魔術方法, __init__ 。透過此方法我們可以定義一個物件的初始操作。然而,當呼叫 x = SomeClass() 的時候, __init__ 並不是第一個被呼叫的方法。實際上,還有一個叫做__new__ 的方法,兩個共同構成了「建構函數」。
__new__是用來建立類別並傳回這個類別的實例, 而__init__只是將傳入的參數來初始化該實例。
在物件生命週期調用結束時,__del__ 方法會被調用,可以將__del__理解為「構析函數」。下面透過程式碼的看一看這三個方法:
from os.path import joinclass FileObject: '''给文件对象进行包装从而确认在删除时文件流关闭''' def __init__(self, filepath='~', filename='sample.txt'): #读写模式打开一个文件 self.file = open(join(filepath, filename), 'r+') def __del__(self): self.file.close() del self.file
控制屬性存取
許多從其他語言轉到Python的人會抱怨它缺乏類別的真正封裝。 (沒有辦法定義私有變量,然後定義公共的getter和setter)。 Python其實可以用魔術方法來完成封裝。我們來看看:
__getattr__(self, name):
定義當使用者試圖取得一個不存在的屬性時的行為。這適用於對普通拼字錯誤的獲取和重定向,對獲取一些不建議的屬性時候給出警告(如果你願意你也可以計算並且給出一個值)或者處理一個 AttributeError 。只有當呼叫不存在的屬性的時候會被傳回。
__setattr__(self, name, value):
與__getattr__(self, name)不同,__setattr__ 是一個封裝的解。無論屬性是否存在,它都允許你定義對屬性的賦值行為,以為這你可以對屬性的值進行個性自訂。實作__setattr__時要避免"無限遞迴"的錯誤。
__delattr__:
與 __setattr__ 相同,但是功能是刪除一個屬性而不是設定他們。實現時也要防止無限遞歸現象發生。
__getattribute__(self, name):
__getattribute__定義了你的屬性被訪問時的行為,相比較,__getattr__只有該屬性不存在時才會起作用。因此,在支援__getattribute__的Python版本,呼叫__getattr__前必定會呼叫 __getattribute__。 __getattribute__同樣要避免"無限遞歸"的錯誤。需要提醒的是,最好不要嘗試去實現__getattribute__,因為很少見到這種做法,而且很容易出bug。
在進行屬性存取控制定義的時候很可能會很容易引起「無限遞歸」。如下面程式碼:
# 错误用法def __setattr__(self, name, value): self.name = value # 每当属性被赋值的时候(如self.name = value), ``__setattr__()`` 会被调用,这样就造成了递归调用。 # 这意味这会调用 ``self.__setattr__('name', value)`` ,每次方法会调用自己。这样会造成程序崩溃。# 正确用法def __setattr__(self, name, value): self.__dict__[name] = value # 给类中的属性名分配值 # 定制特有属性
Python的魔術方法很強大,但是用時卻需要慎之又慎,了解正確的使用方法非常重要。
創建自訂容器
有很多方法可以讓你的Python類別行為向內建容器類型一樣,例如我們常用的list、dict、tuple、string等等。 Python的容器型別分為可變型別(如list、dict)和不可變型別(如string、tuple),可變容器和不可變容器的差別在於,不可變容器一旦賦值後,就不可對其中的某個元素進行修改。
在講創建自訂容器之前,應該先了解下協定。這裡的協定跟其他語言中所謂的"介面"概念很像,它給你很多你必須定義的方法。然而在Python中的協議是很不正式的,不需要明確聲明實作。事實上,他們更像一種指南。
自訂容器的magic method
下面细致了解下定义容器可能用到的魔术方法。首先,实现不可变容器的话,你只能定义 __len__ 和 __getitem__ (下面会讲更多)。可变容器协议则需要所有不可变容器的所有,另外还需要 __setitem__ 和 __delitem__ 。如果你希望你的对象是可迭代的话,你需要定义 __iter__ 会返回一个迭代器。迭代器必须遵循迭代器协议,需要有 __iter__(返回它本身) 和 next。
__len__(self):
返回容器的长度。对于可变和不可变容器的协议,这都是其中的一部分。
__getitem__(self, key):
定义当某一项被访问时,使用self[key]所产生的行为。这也是不可变容器和可变容器协议的一部分。如果键的类型错误将产生TypeError;如果key没有合适的值则产生KeyError。
__setitem__(self, key, value):
当你执行self[key] = value时,调用的是该方法。
__delitem__(self, key):
定义当一个项目被删除时的行为(比如 del self[key])。这只是可变容器协议中的一部分。当使用一个无效的键时应该抛出适当的异常。
__iter__(self):
返回一个容器迭代器,很多情况下会返回迭代器,尤其是当内置的iter()方法被调用的时候,以及当使用for x in container:方式循环的时候。迭代器是它们本身的对象,它们必须定义返回self的__iter__方法。
__reversed__(self):
实现当reversed()被调用时的行为。应该返回序列反转后的版本。仅当序列可以是有序的时候实现它,例如对于列表或者元组。
__contains__(self, item):
定义了调用in和not in来测试成员是否存在的时候所产生的行为。你可能会问为什么这个不是序列协议的一部分?因为当__contains__没有被定义的时候,如果没有定义,那么Python会迭代容器中的元素来一个一个比较,从而决定返回True或者False。
__missing__(self, key):
dict字典类型会有该方法,它定义了key如果在容器中找不到时触发的行为。比如d = {'a': 1}, 当你执行d[notexist]时,d.__missing__['notexist']就会被调用。
一个列子
下面是书中的例子,用魔术方法来实现Haskell语言中的一个数据结构。
# -*- coding: utf-8 -*-class FunctionalList: ''' 实现了内置类型list的功能,并丰富了一些其他方法: head, tail, init, last, drop, take''' def __init__(self, values=None): if values is None: self.values = [] else: self.values = values def __len__(self): return len(self.values) def __getitem__(self, key): return self.values[key] def __setitem__(self, key, value): self.values[key] = value def __delitem__(self, key): del self.values[key] def __iter__(self): return iter(self.values) def __reversed__(self): return FunctionalList(reversed(self.values)) def append(self, value): self.values.append(value) def head(self): # 获取第一个元素 return self.values[0] def tail(self): # 获取第一个元素之后的所有元素 return self.values[1:] def init(self): # 获取最后一个元素之前的所有元素 return self.values[:-1] def last(self): # 获取最后一个元素 return self.values[-1] def drop(self, n): # 获取所有元素,除了前N个 return self.values[n:] def take(self, n): # 获取前N个元素 return self.values[:n]
其实在collections模块中已经有了很多类似的实现,比如Counter、OrderedDict等等。
反射
你也可以控制怎么使用内置在函数sisinstance()和issubclass()方法 反射定义魔术方法. 这个魔术方法是:
__instancecheck__(self, instance):
检查一个实例是不是你定义的类的实例
__subclasscheck__(self, subclass):
检查一个类是不是你定义的类的子类
这些魔术方法的用例看起来很小, 并且确实非常实用. 它们反应了关于面向对象程序上一些重要的东西在Python上,并且总的来说Python: 总是一个简单的方法去找某些事情, 即使是没有必要的. 这些魔法方法可能看起来不是很有用, 但是一旦你需要它们,你会感到庆幸它们的存在。
可调用的对象
你也许已经知道,在Python中,方法是最高级的对象。这意味着他们也可以被传递到方法中,就像其他对象一样。这是一个非常惊人的特性。
在Python中,一个特殊的魔术方法可以让类的实例的行为表现的像函数一样,你可以调用它们,将一个函数当做一个参数传到另外一个函数中等等。这是一个非常强大的特性,其让Python编程更加舒适甜美。
__call__(self, [args...]):
允许一个类的实例像函数一样被调用。实质上说,这意味着 x() 与 x.__call__() 是相同的。注意 __call__ 的参数可变。这意味着你可以定义 __call__ 为其他你想要的函数,无论有多少个参数。
__call__ 在那些类的实例经常改变状态的时候会非常有效。调用这个实例是一种改变这个对象状态的直接和优雅的做法。用一个实例来表达最好不过了:
# -*- coding: UTF-8 -*-class Entity: """ 调用实体来改变实体的位置 """def __init__(self, size, x, y): self.x, self.y = x, y self.size = sizedef __call__(self, x, y): """ 改变实体的位置 """ self.x, self.y = x, y
上下文管理
with声明是从Python2.5开始引进的关键词。你应该遇过这样子的代码:
with open('foo.txt') as bar:
# do something with bar
在with声明的代码段中,我们可以做一些对象的开始操作和退出操作,还能对异常进行处理。这需要实现两个魔术方法: __enter__和 __exit__。
__enter__(self):
定义了当使用with语句的时候,会话管理器在块被初始创建时要产生的行为。请注意,__enter__的返回值与with语句的目标或者as后的名字绑定。
__exit__(self, exception_type, exception_value, traceback):
定义了当一个代码块被执行或者终止后,会话管理器应该做什么。它可以被用来处理异常、执行清理工作或做一些代码块执行完毕之后的日常工作。如果代码块执行成功,exception_type,exception_value,和traceback将会为None。否则,你可以选择处理这个异常或者是直接交给用户处理。如果你想处理这个异常的话,请确保__exit__在所有语句结束之后返回True。如果你想让异常被会话管理器处理的话,那么就让其产生该异常。
创建对象描述器
描述器是通过获取、设置以及删除的时候被访问的类。当然也可以改变其它的对象。描述器并不是独立的。相反,它意味着被一个所有者类持有。当创建面向对象的数据库或者类,里面含有相互依赖的属相时,描述器将会非常有用。一种典型的使用方法是用不同的单位表示同一个数值,或者表示某个数据的附加属性。
为了成为一个描述器,一个类必须至少有__get__,__set__,__delete__方法被实现:
__get__(self, instance, owner):
定义了当描述器的值被取得的时候的行为。instance是拥有该描述器对象的一个实例。owner是拥有者本身
__set__(self, instance, value):
定义了当描述器的值被改变的时候的行为。instance是拥有该描述器类的一个实例。value是要设置的值。
__delete__(self, instance):
定义了当描述器的值被删除的时候的行为。instance是拥有该描述器对象的一个实例。
下面是一个描述器的实例:单位转换。
# -*- coding: UTF-8 -*-class Meter(object): """ 对于单位"米"的描述器 """ def __init__(self, value=0.0): self.value = float(value) def __get__(self, instance, owner): return self.value def __set__(self, instance, value): self.value = float(value)class Foot(object): """ 对于单位"英尺"的描述器 """ def __get__(self, instance, owner): return instance.meter * 3.2808 def __set__(self, instance, value): instance.meter = float(value) / 3.2808class Distance(object): """ 用米和英寸来表示两个描述器之间的距离 """ meter = Meter(10) foot = Foot()
使用时:
>>>d = Distance() >>>print d.foot >>>print d.meter 32.80810.0
复制
有时候,尤其是当你在处理可变对象时,你可能想要复制一个对象,然后对其做出一些改变而不希望影响原来的对象。这就是Python的copy所发挥作用的地方。
__copy__(self):
定义了当对你的类的实例调用copy.copy()时所产生的行为。copy.copy()返回了你的对象的一个浅拷贝——这意味着,当实例本身是一个新实例时,它的所有数据都被引用了——例如,当一个对象本身被复制了,它的数据仍然是被引用的(因此,对于浅拷贝中数据的更改仍然可能导致数据在原始对象的中的改变)。
__deepcopy__(self, memodict={}):
定义了当对你的类的实例调用copy.deepcopy()时所产生的行为。copy.deepcopy()返回了你的对象的一个深拷贝——对象和其数据都被拷贝了。memodict是对之前被拷贝的对象的一个缓存——这优化了拷贝过程并且阻止了对递归数据结构拷贝时的无限递归。当你想要进行对一个单独的属性进行深拷贝时,调用copy.deepcopy(),并以memodict为第一个参数。
附录
用于比较的魔术方法
数值计算的魔术方法
单目运算符和函数
双目运算符或函数
增量运算
类型转换