如何用Python做爬蟲
入門」是良好的動機,但是可能作用緩慢。如果你手裡或腦子裡有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模組一樣慢慢學習。
另外如果說知識體系裡的每一個知識點是圖裡的點,依賴關係是邊的話,那麼這個圖一定不是一個有向無環圖。 “入門”,因為這樣的“入門”點根本不存在!爭論說需要先懂python,不然怎麼學會python做爬蟲呢?軟體怎麼爬,那我就講講「道」和「術」吧——爬蟲怎麼工作以及怎麼在python實現。的http抓取工具,scrapy
Bloom Filter: Bloom Filters by Example
如果需要大規模網頁抓取,你需要學習分散式爬蟲的概念。有效分享的分散式隊列就好。析取(grangier/python-goose · GitHub),存放(Mongodb)
很簡單
import Queueinitial_page = "http://www.renminribao.com"url_queue = Queue.Queue()seen = set()seen.insert(initial_page)url_queue.put(initial_page)while(True):#一直進行到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #把這個url代表的網頁儲存好
for next_url in extract_urls(current_url): #提取把這個url鏈接向的url
if next_url not in seen: url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這裡,下面分析一下為什麼爬蟲事實上是個非常複雜的東西——搜尋引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的程式碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜尋引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,上面的程式碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的複雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的複雜度。 OK,OK,我知道python的set實作是hash——不過這樣還是太慢了,至少記憶體使用效率不高。
通常的判重做法是怎麼樣? Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒看過。但如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這裡的不確定性在你分配的記憶體夠大的時候,可以變得很小很少。一個簡單的教學:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小機率重複看一看(沒關係,多看看不會累死)。但如果沒被看過,一定會被看一下(這很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的頻寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那你只有加快這個速度。用一台機子不夠的話-用很多台吧!當然,我們假設每台機子都已經進了最大的效率-使用多執行緒(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運轉了一個月。想像如果只用一台機子你就得運作100個月了...
那麼,假設你現在有100台機器可以用,怎麼用python實作一個分散式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面程式碼中的url_queue,如果我們能把這個queue放到這台master在機器上,所有的slave都可以透過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的連結送到master的queue裡去。同樣,bloom filter也放到master上,但現在master只傳送一個確定沒有被造訪過的url給slave。 Bloom Filter放到master的記憶體裡,而被造訪過的url放到運行在master上的Redis裡,這樣確保所有操作都是O(1)。 (至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq當分佈式佇列。
程式碼於是寫成
#slave.py current_url = request_from_master() to_send = [] for next_url in extract_urls(current_url): to_send.append(next_url) store(current_url); send_to_master(to_send) #master.py distributed_queue = DistributedQueue() bf = BloomFilter() initial_pages = "www.renmingribao.com" while(True): if request == 'GET': if distributed_queue.size()>0: send(distributed_queue.get()) else: break elif request == 'POST': bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然用很多」簡單”,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的程式碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(數據庫應該怎樣安排)
有效地資訊抽取(例如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜尋引擎通常不需要儲存所有的信息,例如圖片我存來幹嘛...
及時更新(預測這個網頁多久會更新一次)

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。
