深入理解 Python 中的多線程 新手必看
範例1
我們將要要求五個不同的url:
單執行緒
import time import urllib2 defget_responses(): urls=[ ‘http://www.baidu.com', ‘http://www.amazon.com', ‘http://www.ebay.com', ‘http://www.alibaba.com', ‘http://www.jb51.net' ] start=time.time() forurlinurls: printurl resp=urllib2.urlopen(url) printresp.getcode() print”Elapsed time: %s”%(time.time()-start) get_responses()
輸出是:
http://www.baidu.com200
http://www.amazon.com2000www .ebay.com200
http://www.alibaba.com200
http://www.jb51.net200
Elapsed
time:3.0814409256
url順序的被請求
除非cpu從一個url獲得了回應,否則不會去請求下一個url
網絡請求會花費較長的時間,所以cpu在等待網絡請求的返回時間內部一直處於閒置狀態。
多執行緒
import urllib2 import time from threading import Thread classGetUrlThread(Thread): def__init__(self, url): self.url=url super(GetUrlThread,self).__init__() defrun(self): resp=urllib2.urlopen(self.url) printself.url, resp.getcode() defget_responses(): urls=[ ‘http://www.baidu.com', ‘http://www.amazon.com', ‘http://www.ebay.com', ‘http://www.alibaba.com', ‘http://www.jb51.net' ] start=time.time() threads=[] forurlinurls: t=GetUrlThread(url) threads.append(t) t.start() fortinthreads: t.join() print”Elapsed time: %s”%(time.time()-start) get_responses()
http://www.jb51.net200
http://www.baidu.com200
http://www.amazon.com200
http://www.babaaba.amazon.com200
http://www.b
http://www.ebay.com200
Elapsed
time:0.689890861511
解釋:
意識到了程式在執行時間上的提升
我們寫了一個多執行緒程式來減少cpu的等待時間,當我們在等待一個執行緒內的網路請求返回時,這時cpu可以切換到其他執行緒去進行其他執行緒內的網路請求。
我們期望一個執行緒處理一個url,所以實例化執行緒類別的時候我們傳了一個url。
執行緒運行意味著執行類別裡的run()方法。
無論如何我們想每個執行緒必須執行run()。
為每個url建立一個執行緒並且呼叫start()方法,這告訴了cpu可以執行緒中的run()方法了。
我們希望所有的執行緒執行完畢的時候再計算花費的時間,所以呼叫了join()方法。
join()可以通知主執行緒等待這個執行緒結束後,才可以執行下一條指令。
每個執行緒我們都呼叫了join()方法,所以我們是在所有執行緒執行完畢後計算的運行時間。
關於執行緒:
cpu可能不會在呼叫start()後馬上執行run()方法。
你不能確定run()在不同執行緒建間的執行順序。
對於單獨的一個線程,可以保證run()方法裡的語句是依照順序執行的。
這就是因為執行緒內的url會先被要求,然後再印出回傳的結果。
實例2
我們將會用一個程式示範多執行緒間的資源競爭,並修正這個問題。
from threading import Thread #define a global variable some_var=0 classIncrementThread(Thread): defrun(self): #we want to read a global variable #and then increment it globalsome_var read_value=some_var print”some_var in %s is %d”%(self.name, read_value) some_var=read_value+1 print”some_var in %s after increment is %d”%(self.name, some_var) defuse_increment_thread(): threads=[] foriinrange(50): t=IncrementThread() threads.append(t) t.start() fortinthreads: t.join() print”After 50 modifications, some_var should have become 50″ print”After 50 modifications, some_var is %d”%(some_var,) use_increment_thread()
多次運行這個程序,你會看到多種不同的結果。
解釋:
有一個全域變量,所有的執行緒都想修改它。
所有的執行緒應該在這個全域變數上加
1
。
有50個線程,最後這個數值應該變成50,但是它卻沒有。
為什麼沒有達到50?
在some_var是15的時候,線程t1讀取了some_var,這個時刻cpu將控制權給了另一個線程t2。
t2線程讀到的some_var也是15
t1和t2都把some_var加到16
當時我們期望的是t1
t2兩個線程使some_var +
2變成17
在這裡就有了資源競爭。
相同的情況也可能發生在其它的線程間,所以出現了最後的結果小於50的情況。
解決資源競爭
from threading import Lock, Thread lock=Lock() some_var=0 classIncrementThread(Thread): defrun(self): #we want to read a global variable #and then increment it globalsome_var lock.acquire() read_value=some_var print”some_var in %s is %d”%(self.name, read_value) some_var=read_value+1 print”some_var in %s after increment is %d”%(self.name, some_var) lock.release() defuse_increment_thread(): threads=[] foriinrange(50): t=IncrementThread() threads.append(t) t.start() fortinthreads: t.join() print”After 50 modifications, some_var should have become 50″ print”After 50 modifications, some_var is %d”%(some_var,) use_increment_thread()
再次運行這個程序,達到了我們預期的結果。
解釋:
Lock
用來防止競爭條件
如果在執行一些操作之前,線程t1獲得了鎖。其他的線程在t1釋放Lock之前,不會執行相同的操作
我們想要確定的是一旦線程t1已經讀取了some_var,直到t1完成了修改some_var,其他的線程才可以讀取some_var
這樣讀取而修改some_var成了邏輯上的原子操作。
實例3
讓我們用一個例子來證明一個執行緒不能影響其他執行緒內的變數(非全域變數)。
time.sleep()可以使一個執行緒掛起,強制執行緒切換發生。
from threading import Thread import time classCreateListThread(Thread): defrun(self): self.entries=[] foriinrange(10): time.sleep(1) self.entries.append(i) printself.entries defuse_create_list_thread(): foriinrange(3): t=CreateListThread() t.start() use_create_list_thread()
運行幾次後發現並沒有印出爭取的結果。當一個線程正在列印的時候,cpu切換到了另一個線程,所以產生了不正確的結果。我們需要確保print
self.entries是個邏輯上的原子操作,以防列印時被其他執行緒打斷。
我們使用了Lock(),來看下邊的範例。
from threading import Thread, Lock import time lock=Lock() classCreateListThread(Thread): defrun(self): self.entries=[] foriinrange(10): time.sleep(1) self.entries.append(i) lock.acquire() printself.entries lock.release() defuse_create_list_thread(): foriinrange(3): t=CreateListThread() t.start() use_create_list_thread()
這次我們看到了正確的結果。證明了一個執行緒不可以修改其他執行緒內部的變數(非全域變數)。
以上就是 Python 中的多線程,更多相關文章請關注PHP中文網(www.php.cn)!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。
