首頁 Java java教程 細緻解讀希爾排序演算法與相關的Java程式碼實現

細緻解讀希爾排序演算法與相關的Java程式碼實現

Jan 19, 2017 am 09:20 AM

希爾排序(Shell's sort)是一種非常「神奇」的排序演算法。說它“神奇”,是因為沒有任何人能清楚地說明它的性能到底能到什麼情況。希爾排序因DL. Shell於1959年提出而得名。自從C. A. R. Hoare在1962年提出快速排序後,由於其更為簡單,一般採用快速排序。但是,不少數學家們還是孜孜不倦地尋找希爾排序的最佳複雜度。作為普通程式設計師,我們可以學習下希爾的思路。
順便說一句,在希爾排序出現之前,電腦界普遍存在「排序演算法不可能突破O(n2)」的觀點。希爾排序的出現打破了這個魔咒,很快,快速排序等演算法相繼問世。從這個意義上說,希爾排序帶領我們走向了一個新的時代。

演算法概述/思路
希爾排序的提出,主要基於以下兩點:
1.插入排序演算法在數組基本有序的情況下,可以近似達到O(n)複雜度,效率極高。
2.但插入排序每次只能將資料移動一位,在數組較大且基本無序的情況下效能會迅速惡化。

基於此,我們可以使用一種分組的插入排序方法,具體做法是:(以一個16元素大小的數組為例)
1.選擇一個增量delta,該增量大於1,從數組中按此增量選擇出子數組進行一次直接插入排序。例如,若選擇增量為5,則對下標為0,5,10,15的元素進行排序。
2.保留該增量delta並依序移動首個元素進行直接插入排序,直到一輪完成。對於上面的例子,則依序對數組[1,6,11],[2,7,12],[3,8,13],[4,9,14]進行排序。
3.減少增量,不斷重複上述過程,直到增量減小為1.顯然,最後一次為直接插入排序。
4.排序完成。
從上面可以看出,增量是不斷減少的,因此,希爾排序又被成為「縮小增量排序」。

程式碼實現

package sort; 
  
public class ShellSortTest { 
  public static int count = 0; 
  
  public static void main(String[] args) { 
  
    int[] data = new int[] { 5, 3, 6, 2, 1, 9, 4, 8, 7 }; 
    print(data); 
    shellSort(data); 
    print(data); 
  
  } 
  
  public static void shellSort(int[] data) { 
    // 计算出最大的h值 
    int h = 1; 
    while (h <= data.length / 3) { 
      h = h * 3 + 1; 
    } 
    while (h > 0) { 
      for (int i = h; i < data.length; i += h) { 
        if (data[i] < data[i - h]) { 
          int tmp = data[i]; 
          int j = i - h; 
          while (j >= 0 && data[j] > tmp) { 
            data[j + h] = data[j]; 
            j -= h; 
          } 
          data[j + h] = tmp; 
          print(data); 
        } 
      } 
      // 计算出下一个h值 
      h = (h - 1) / 3; 
    } 
  } 
  
  public static void print(int[] data) { 
    for (int i = 0; i < data.length; i++) { 
      System.out.print(data[i] + "\t"); 
    } 
    System.out.println(); 
  } 
  
}
登入後複製

運行結果:

5  3  6  2  1  9  4  8  7   
1  3  6  2  5  9  4  8  7   
1  2  3  6  5  9  4  8  7   
1  2  3  5  6  9  4  8  7   
1  2  3  4  5  6  9  8  7   
1  2  3  4  5  6  8  9  7   
1  2  3  4  5  6  7  8  9   
1  2  3  4  5  6  7  8  9
登入後複製

演算法性能/複雜度
希爾排序的增量數列可以任取,需要的唯一條件是最後一個一定為1(因為要保證按1有序)。但是,不同的數列選取會對演算法的效能造成極大的影響。上面的程式碼演示了兩種增量。
切記:增量序列中每兩個元素最好不要出現1以外的公因子! (很顯然,以4有序的數列再去按2排序意義並不大)。
下面是一些常見的增量序列。
第一種增量是最初Donald Shell提出的增量,即折半降低直到1。據研究,使用希爾增量,其時間複雜度仍是O(n2)。
第二種增量Hibbard:{1, 3, ..., 2^k-1}。此增量序列的時間複雜度大約是O(n^1.5)。
第三種增量Sedgewick增量:(1, 5, 19, 41, 109,...),其生成序列或9*4^i - 9*2^i + 1或4^i - 3*2^i + 1。

演算法穩定性
我們都知道插入排序是穩定演算法。但是,Shell排序是一個多次插入的過程。在一次插入中我們能確保不移動相同元素的順序,但在多次的插入中,相同元素完全有可能在不同的插入輪次被移動,最後穩定性被破壞,因此,Shell排序不是一個穩定的演算法.

演算法適用場景
Shell排序雖然快,但是畢竟是插入排序,其數量級並沒有後起之秀--快速排序O(n㏒n)快。在大量資料面前,Shell排序不是一個好的演算法。但是,中小型規模的數據完全可以使用它。

更多細緻解讀希爾排序演算法與相關的Java程式碼實作相關文章請關注PHP中文網!


本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

公司安全軟件導致應用無法運行?如何排查和解決? 公司安全軟件導致應用無法運行?如何排查和解決? Apr 19, 2025 pm 04:51 PM

公司安全軟件導致部分應用無法正常運行的排查與解決方法許多公司為了保障內部網絡安全,會部署安全軟件。 ...

如何使用MapStruct簡化系統對接中的字段映射問題? 如何使用MapStruct簡化系統對接中的字段映射問題? Apr 19, 2025 pm 06:21 PM

系統對接中的字段映射處理在進行系統對接時,常常會遇到一個棘手的問題:如何將A系統的接口字段有效地映�...

如何優雅地獲取實體類變量名構建數據庫查詢條件? 如何優雅地獲取實體類變量名構建數據庫查詢條件? Apr 19, 2025 pm 11:42 PM

在使用MyBatis-Plus或其他ORM框架進行數據庫操作時,經常需要根據實體類的屬性名構造查詢條件。如果每次都手動...

如何將姓名轉換為數字以實現排序並保持群組中的一致性? 如何將姓名轉換為數字以實現排序並保持群組中的一致性? Apr 19, 2025 pm 11:30 PM

將姓名轉換為數字以實現排序的解決方案在許多應用場景中,用戶可能需要在群組中進行排序,尤其是在一個用...

IntelliJ IDEA是如何在不輸出日誌的情況下識別Spring Boot項目的端口號的? IntelliJ IDEA是如何在不輸出日誌的情況下識別Spring Boot項目的端口號的? Apr 19, 2025 pm 11:45 PM

在使用IntelliJIDEAUltimate版本啟動Spring...

Java對像如何安全地轉換為數組? Java對像如何安全地轉換為數組? Apr 19, 2025 pm 11:33 PM

Java對象與數組的轉換:深入探討強制類型轉換的風險與正確方法很多Java初學者會遇到將一個對象轉換成數組的�...

電商平台SKU和SPU數據庫設計:如何兼顧用戶自定義屬性和無屬性商品? 電商平台SKU和SPU數據庫設計:如何兼顧用戶自定義屬性和無屬性商品? Apr 19, 2025 pm 11:27 PM

電商平台SKU和SPU表設計詳解本文將探討電商平台中SKU和SPU的數據庫設計問題,特別是如何處理用戶自定義銷售屬...

使用TKMyBatis進行數據庫查詢時,如何優雅地獲取實體類變量名構建查詢條件? 使用TKMyBatis進行數據庫查詢時,如何優雅地獲取實體類變量名構建查詢條件? Apr 19, 2025 pm 09:51 PM

在使用TKMyBatis進行數據庫查詢時,如何優雅地獲取實體類變量名以構建查詢條件,是一個常見的難題。本文將針...

See all articles