Timer來講就是一個調度器,而TimerTask呢只是一個實作了run方法的一個類別,而具體的TimerTask需要由你自己來實作
[code]Timer timer = new Timer(); timer.schedule(new TimerTask() { public void run() { System.out.println("abc"); } }, 200000 , 1000);
public void schedule(TimerTask task, long delay)
public void schedule(TimerTask task, long delay)
〜這個方法是這個方法。調度一個task,經過delay(ms)後開始進行調度,僅僅調度一次。
public void schedule(TimerTask task, Date time)
在指定的時間點time上調度一次。
public void schedule(TimerTask task, long delay, long period)
這個方法是調度一個task,在delay(ms)後開始調度,每次調度完後,最少等待period(ms)後才開始調度。
public void schedule(TimerTask task, Date firstTime, long period)
和上一個方法類似,唯一的差異就是傳入的第二個參數為第一次調度的時間。
public void scheduleAtFixedRate(TimerTask task, long delay, long period)
[code]public Timer() { this("Timer-" + serialNumber()); }
[code]public Timer(boolean isDaemon) { this("Timer-" + serialNumber(), isDaemon); }
[code]public Timer(String name, boolean isDaemon) { thread.setName(name); thread.setDaemon(isDaemon); thread.start(); }
private TaskQueue queue = new TaskQueue();
[code]public void schedule(TimerTask task, long delay) { if (delay < 0) throw new IllegalArgumentException("Negative delay."); sched(task, System.currentTimeMillis()+delay, 0); }
[code]public void schedule(TimerTask task, long delay, long period) { if (delay < 0) throw new IllegalArgumentException("Negative delay."); if (period <= 0) throw new IllegalArgumentException("Non-positive period."); sched(task, System.currentTimeMillis()+delay, -period); }
[code]public void scheduleAtFixedRate(TimerTask task, long delay, long period) { if (delay < 0) throw new IllegalArgumentException("Negative delay."); if (period <= 0) throw new IllegalArgumentException("Non-positive period."); sched(task, System.currentTimeMillis()+delay, period); }
public void scheduleAtFixedRate(TimerTasktask,long delay,long period)
[code]private void sched(TimerTask task, long time, long period) { if (time < 0) throw new IllegalArgumentException("Illegal execution time."); synchronized(queue) { if (!thread.newTasksMayBeScheduled) throw new IllegalStateException("Timer already cancelled."); synchronized(task.lock) { if (task.state != TimerTask.VIRGIN) throw new IllegalStateException( "Task already scheduled or cancelled"); task.nextExecutionTime = time; task.period = period; task.state = TimerTask.SCHEDULED; } queue.add(task); if (queue.getMin() == task) queue.notify(); } }
唯一的區別就是在period沒有取反,
[code]class TaskQueue { private TimerTask[] queue = new TimerTask[128]; private int size = 0;
[code]class TaskQueue { private TimerTask[] queue = new TimerTask[128]; private int size = 0;
TaskQueue的结构很简单,为一个数组,加一个size,有点像ArrayList,是不是长度就128呢,当然不是,ArrayList可以扩容,它可以,只是会造成内存拷贝而已,所以一个Timer来讲,只要内部的task个数不超过128是不会造成扩容的;内部提供了add(TimerTask)、size()、getMin()、get(int)、removeMin()、quickRemove(int)、rescheduleMin(long newTime)、isEmpty()、clear()、fixUp()、fixDown()、heapify();
add(TimerTaskt)为增加一个任务
size()任务队列的长度
getMin()获取当前排序后最近需要执行的一个任务,下标为1,队列头部0是不做任何操作的。
get(inti)获取指定下标的数据,当然包括下标0.
removeMin()为删除当前最近执行的任务,也就是第一个元素,通常只调度一次的任务,在执行完后,调用此方法,就可以将TimerTask从队列中移除。
quickRmove(inti)删除指定的元素,一般来说是不会调用这个方法的,这个方法只有在Timer发生purge的时候,并且当对应的TimerTask调用了cancel方法的时候,才会被调用这个方法,也就是取消某个TimerTask,然后就会从队列中移除(注意如果任务在执行中是,还是仍然在执行中的,虽然在队列中被移除了),还有就是这个cancel方法并不是Timer的cancel方法而是TimerTask,一个是调度器的,一个是单个任务的,最后注意,这个quickRmove完成后,是将队列最后一个元素补充到这个位置,所以此时会造成顺序不一致的问题,后面会有方法进行回补。
rescheduleMin(long newTime)是重新设置当前执行的任务的下一次执行时间,并在队列中将其从新排序到合适的位置,而调用的是后面说的fixDown方法。
对于fixUp和fixDown方法来讲,前者是当新增一个task的时候,首先将元素放在队列的尾部,然后向前找是否有比自己还要晚执行的任务,如果有,就将两个任务的顺序进行交换一下。而fixDown正好相反,执行完第一个任务后,需要加上一个时间片得到下一次执行时间,从而需要将其顺序与后面的任务进行对比下。
[code]private void fixDown(int k) { int j; while ((j = k << 1) <= size && j > 0) { if (j < size && queue[j].nextExecutionTime > queue[j+1].nextExecutionTime) j++; // j indexes smallest kid if (queue[k].nextExecutionTime <= queue[j].nextExecutionTime) break; TimerTask tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp; k = j; } }
这种方式并非排序,而是找到一个合适的位置来交换,因为并不是通过队列逐个找的,而是每次移动一个二进制为,例如传入1的时候,接下来就是2、4、8、16这些位置,找到合适的位置放下即可,顺序未必是完全有序的,它只需要看到距离调度部分的越近的是有序性越强的时候就可以了,这样即可以保证一定的顺序性,达到较好的性能。
[code]public void cancel() { synchronized(queue) { thread.newTasksMayBeScheduled = false; queue.clear(); queue.notify(); // In case queue was already empty. } }
貌似仅仅将队列清空掉,然后设置了newTasksMayBeScheduled状态为false,最后让队列也调用了下notify操作,但是没有任何地方让线程结束掉,那么就要回到我们开始说的Timer中包含的thread为:TimerThread类了,在看这个类之前,再看下Timer中最后一个purge()类,当你对很多Task做了cancel操作后,此时通过调用purge方法实现对这些cancel掉的类空间的回收,上面已经提到,此时会造成顺序混乱,所以需要调用队里的heapify方法来完成顺序的重排,源码如下:
[code]public int purge() { int result = 0; synchronized(queue) { for (int i = queue.size(); i > 0; i--) { if (queue.get(i).state == TimerTask.CANCELLED) { queue.quickRemove(i); result++; } } if (result != 0) queue.heapify(); } return result; }
那么调度呢,是如何调度的呢,那些notify,和清空队列是如何做到的呢?我们就要看看TimerThread类了,内部有一个属性是:newTasksMayBeScheduled,也就是我们开始所提及的那个参数在cancel的时候会被设置为false。
也就是我们所调用的queue了,这下联通了吧,不过这里是queue是通过构造方法传入的,传入后赋值用以操作,很明显是Timer传递给这个线程的,我们知道它是一个线程,所以执行的中心自然是run方法了,所以看下run方法的body部分是:
[code]public void run() { try { mainLoop(); } finally { synchronized(queue) { newTasksMayBeScheduled = false; queue.clear(); // Eliminate obsolete references } } }
[code]private void mainLoop() { while (true) { try { TimerTask task; boolean taskFired; synchronized(queue) { // Wait for queue to become non-empty while (queue.isEmpty() && newTasksMayBeScheduled) queue.wait(); if (queue.isEmpty()) break; // Queue is empty and will forever remain; die // Queue nonempty; look at first evt and do the right thing long currentTime, executionTime; task = queue.getMin(); synchronized(task.lock) { if (task.state == TimerTask.CANCELLED) { queue.removeMin(); continue; // No action required, poll queue again } currentTime = System.currentTimeMillis(); executionTime = task.nextExecutionTime; if (taskFired = (executionTime<=currentTime)) { if (task.period == 0) { // Non-repeating, remove queue.removeMin(); task.state = TimerTask.EXECUTED; } else { // Repeating task, reschedule queue.rescheduleMin( task.period<0 ? currentTime - task.period : executionTime + task.period); } } } if (!taskFired) // Task hasn't yet fired; wait queue.wait(executionTime - currentTime); } if (taskFired) // Task fired; run it, holding no locks task.run(); } catch(InterruptedException e) { } } }
以发现这个timer是一个死循环程序,除非遇到不能捕获的异常或break才会跳出,首先注意这段代码:
hile (queue.isEmpty() &&newTasksMayBeScheduled) queue.wait();
循环体为循环过程中,条件为queue为空且newTasksMayBeScheduled状态为true,可以看到这个状态其关键作用,也就是跳出循环的条件就是要么队列不为空,要么是newTasksMayBeScheduled状态设置为false才会跳出,而wait就是在等待其他地方对queue发生notify操作,从上面的代码中可以发现,当发生add、cancel以及在threadReaper调用finalize方法的时候会被调用,第三个我们基本可以不考虑其实发生add的时候也就是当队列还是空的时候,发生add使得队列不为空就跳出循环,而cancel是设置了状态,否则不会进入这个循环,那么看下面的代码
if (queue.isEmpty()) break;
当跳出上面的循环后,如果是设置了newTasksMayBeScheduled状态为false跳出,也就是调用了cancel,那么queue就是空的,此时就直接跳出外部的死循环,所以cancel就是这样实现的,如果下面的任务还在跑还没运行到这里来,cancel是不起作用的。
接下来是获取一个当前系统时间和上次预计的执行时间,如果预计执行的时间小于当前系统时间,那么就需要执行,此时判定时间片是否为0,如果为0,则调用removeMin方法将其移除,否则将task通过rescheduleMin设置最新时间并排序:
[code]currentTime = System.currentTimeMillis(); executionTime = task.nextExecutionTime; if (taskFired = (executionTime<=currentTime)) { if (task.period == 0) { // Non-repeating, remove queue.removeMin(); task.state = TimerTask.EXECUTED; } else { // Repeating task, reschedule queue.rescheduleMin( task.period<0 ? currentTime - task.period : executionTime + task.period); }
这里可以看到,period为负数的时候,就会被认为是按照按照当前系统时间+一个时间片来计算下一次时间,就是前面说的schedule和scheduleAtFixedRate的区别了,其实内部是通过正负数来判定的,也许java是不想增加参数,而又想增加程序的可读性,才这样做,其实通过正负判定是有些诡异的,也就是你如果在schedule方法传入负数达到的功能和scheduleAtFixedRate的功能是一样的,相反在scheduleAtFixedRate方法中传入负数功能和schedule方法是一样的。
同时你可以看到period为0,就是只执行一次,所以时间片正负0都用上了,呵呵,然后再看看mainLoop接下来的部分:
[code]if (!taskFired)// Taskhasn't yet fired; wait queue.wait(executionTime- currentTime);
这里是如果任务执行时间还未到,就等待一段时间,当然这个等待很可能会被其他的线程操作add和cancel的时候被唤醒,因为内部有notify方法,所以这个时间并不是完全准确,在这里大多数情况下是考虑Timer内部的task信息是稳定的,cancel方法唤醒的话是另一回事。
[code] if (taskFired) // Task fired; run it, holding no locks task.run();
如果线程需要执行,那么调用它的run方法,而并非启动一个新的线程或从线程池中获取一个线程来执行,所以TimerTask的run方法并不是多线程的run方法,虽然实现了Runnable,但是仅仅是为了表示它是可执行的,并不代表它必须通过线程的方式来执行的。
Timer和TimerTask的简单组合是多线程的嘛?不是,一个Timer内部包装了“一个Thread”和“一个Task”队列,这个队列按照一定的方式将任务排队处理,包含的线程在Timer的构造方法调用时被启动,这个Thread的run方法无限循环这个Task队列,若队列为空且没发生cancel操作,此时会一直等待,如果等待完成后,队列还是为空,则认为发生了cancel从而跳出死循环,结束任务;循环中如果发现任务需要执行的时间小于系统时间,则需要执行,那么根据任务的时间片从新计算下次执行时间,若时间片为0代表只执行一次,则直接移除队列即可。
但是是否能实现多线程呢?可以,任何东西是否是多线程完全看个人意愿,多个Timer自然就是多线程的,每个Timer都有自己的线程处理逻辑,当然Timer从这里来看并不是很适合很多任务在短时间内的快速调度,至少不是很适合同一个timer上挂很多任务,在多线程的领域中我们更多是使用多线程中的:但是是否能实现多线程呢?可以,任何东西是否是多线程完全看个人意愿,多个Timer自然就是多线程的,每个Timer都有自己的线程处理逻辑,当然Timer从这里来看并不是很适合很多任务在短时间内的快速调度,至少不是很适合同一个timer上挂很多任务,在多线程的领域中我们更多是使用多线程中的:
Executors.newScheduledThreadPool
来完成对调度队列中的线程池的处理,内部通过new ScheduledThreadPoolExecutor来创建线程池的Executor的创建,当然也可以调用
[code]Executors.unconfigurableScheduledExecutorService
方法来创建一个DelegatedScheduledExecutorService其实这个类就是包装了下下scheduleExecutor,也就是这只是一个壳,英文理解就是被委派的意思,被托管的意思。
以上就是java-并发-Timer和TimerTask的内容,更多相关内容请关注PHP中文网(www.php.cn)!