首頁 > 後端開發 > Python教學 > 使用Python的Twisted框架編寫非阻塞程式的程式碼範例

使用Python的Twisted框架編寫非阻塞程式的程式碼範例

高洛峰
發布: 2017-02-03 16:33:30
原創
1309 人瀏覽過

先來看一段程式碼:

# ~*~ Twisted - A Python tale ~*~
 
from time import sleep
 
# Hello, I'm a developer and I mainly setup Wordpress.
def install_wordpress(customer):
  # Our hosting company Threads Ltd. is bad. I start installation and...
  print "Start installation for", customer
  # ...then wait till the installation finishes successfully. It is
  # boring and I'm spending most of my time waiting while consuming
  # resources (memory and some CPU cycles). It's because the process
  # is *blocking*.
  sleep(3)
  print "All done for", customer
 
# I do this all day long for our customers
def developer_day(customers):
  for customer in customers:
    install_wordpress(customer)
 
developer_day(["Bill", "Elon", "Steve", "Mark"])
登入後複製

  

運行一下,結果如下所示:

   
$ ./deferreds.py 1
登入後複製
------ Running example 1 ------
Start installation for Bill
All done for Bill
Start installation
...
* Elapsed time: 12.03 seconds
登入後複製

這是一段順序執行的程式碼。四個消費者,為一個人安裝需要3秒的時間,那麼四個人就是12秒。這樣處理不是很令人滿意,所以看一下第二個使用了線程的例子:

import threading
 
# The company grew. We now have many customers and I can't handle the
# workload. We are now 5 developers doing exactly the same thing.
def developers_day(customers):
  # But we now have to synchronize... a.k.a. bureaucracy
  lock = threading.Lock()
  #
  def dev_day(id):
    print "Goodmorning from developer", id
    # Yuck - I hate locks...
    lock.acquire()
    while customers:
      customer = customers.pop(0)
      lock.release()
      # My Python is less readable
      install_wordpress(customer)
      lock.acquire()
    lock.release()
    print "Bye from developer", id
  # We go to work in the morning
  devs = [threading.Thread(target=dev_day, args=(i,)) for i in range(5)]
  [dev.start() for dev in devs]
  # We leave for the evening
  [dev.join() for dev in devs]
 
# We now get more done in the same time but our dev process got more
# complex. As we grew we spend more time managing queues than doing dev
# work. We even had occasional deadlocks when processes got extremely
# complex. The fact is that we are still mostly pressing buttons and
# waiting but now we also spend some time in meetings.
developers_day(["Customer %d" % i for i in xrange(15)])
登入後複製

  

運行一下:

 $ ./deferreds.py 2
登入後複製
------ Running example 2 ------
Goodmorning from developer 0Goodmorning from developer
1Start installation forGoodmorning from developer 2
Goodmorning from developer 3Customer 0
...
from developerCustomer 13 3Bye from developer 2
* Elapsed time: 9.02 seconds
登入後複製

這次是一段並行執行的程式碼,使用了5個工作線程。 15個消費者每個花3s意味著總共45s的時間,不過花了5個執行緒並行執行總共只花了9s的時間。這段程式碼有點複雜,很大一部分程式碼是用於管理並發,而不是專注於演算法或業務邏輯。另外,程式的輸出結果看起來也很混雜,可讀性也天津市。即使是簡單的多執行緒的程式碼同樣難以寫得很好,所以我們轉為使用Twisted:

# For years we thought this was all there was... We kept hiring more
# developers, more managers and buying servers. We were trying harder
# optimising processes and fire-fighting while getting mediocre
# performance in return. Till luckily one day our hosting
# company decided to increase their fees and we decided to
# switch to Twisted Ltd.!
 
from twisted.internet import reactor
from twisted.internet import defer
from twisted.internet import task
 
# Twisted has a slightly different approach
def schedule_install(customer):
  # They are calling us back when a Wordpress installation completes.
  # They connected the caller recognition system with our CRM and
  # we know exactly what a call is about and what has to be done next.
  #
  # We now design processes of what has to happen on certain events.
  def schedule_install_wordpress():
      def on_done():
        print "Callback: Finished installation for", customer
    print "Scheduling: Installation for", customer
    return task.deferLater(reactor, 3, on_done)
  #
  def all_done(_):
    print "All done for", customer
  #
  # For each customer, we schedule these processes on the CRM
  # and that
  # is all our chief-Twisted developer has to do
  d = schedule_install_wordpress()
  d.addCallback(all_done)
  #
  return d
 
# Yes, we don't need many developers anymore or any synchronization.
# ~~ Super-powered Twisted developer ~~
def twisted_developer_day(customers):
  print "Goodmorning from Twisted developer"
  #
  # Here's what has to be done today
  work = [schedule_install(customer) for customer in customers]
  # Turn off the lights when done
  join = defer.DeferredList(work)
  join.addCallback(lambda _: reactor.stop())
  #
  print "Bye from Twisted developer!"
# Even his day is particularly short!
twisted_developer_day(["Customer %d" % i for i in xrange(15)])
 
# Reactor, our secretary uses the CRM and follows-up on events!
reactor.run()
登入後複製

   


運行結果:

------ Running example 3 ------
Goodmorning from Twisted developer
Scheduling: Installation for Customer 0
....
Scheduling: Installation for Customer 14
Bye from Twisted developer!
Callback: Finished installation for Customer 0
All done for Customer 0
Callback: Finished installation for Customer 1
All done for Customer 1
...
All done for Customer 14
* Elapsed time: 3.18 seconds
登入後複製


運行結果:

# Twisted gave us utilities that make our code way more readable!
@defer.inlineCallbacks
def inline_install(customer):
  print "Scheduling: Installation for", customer
  yield task.deferLater(reactor, 3, lambda: None)
  print "Callback: Finished installation for", customer
  print "All done for", customer
 
def twisted_developer_day(customers):
  ... same as previously but using inline_install() instead of schedule_install()
 
twisted_developer_day(["Customer %d" % i for i in xrange(15)])
reactor.run()
登入後複製



運行結果:

@defer.inlineCallbacks
def inline_install(customer):
  ... same as above
 
# The new "problem" is that we have to manage all this concurrency to
# avoid causing problems to others, but this is a nice problem to have.
def twisted_developer_day(customers):
  print "Goodmorning from Twisted developer"
  work = (inline_install(customer) for customer in customers)
  #
  # We use the Cooperator mechanism to make the secretary not
  # service more than 5 customers simultaneously.
  coop = task.Cooperator()
  join = defer.DeferredList([coop.coiterate(work) for i in xrange(5)])
  #
  join.addCallback(lambda _: reactor.stop())
  print "Bye from Twisted developer!"
 
twisted_developer_day(["Customer %d" % i for i in xrange(15)])
reactor.run()
 
# We are now more lean than ever, our customers happy, our hosting
# bills ridiculously low and our performance stellar.
# ~*~ THE END ~*~
登入後複製


運行結果:

$ ./deferreds.py 5
------ Running example 5 ------
Goodmorning from Twisted developer
Bye from Twisted developer!
Scheduling: Installation for Customer 0
...
Callback: Finished installation for Customer 4
All done for Customer 4
Scheduling: Installation for Customer 5
...
Callback: Finished installation for Customer 14
All done for Customer 14
* Elapsed time: 9.19 seconds
登入後複製


運行結果中我們得到了一次完美的執行程式

可讀性強的輸出結果,且沒有使用執行緒。我們並行地處理了15個消費者,也就是說,本來需要45s的執行時間在3s之內就已經完成。這個竅門就是我們把所有的阻塞的對sleep()的呼叫都換成了Twisted中對等的task.deferLater()和回調函數。由於現在處理的操作在其他地方進行,我們就可以毫不費力地同時服務15個消費者。

前面提到處理的操作發生在其他的某個地方。現在來解釋一下,算術運算仍然發生在CPU內,但是現在的CPU處理速度相比磁碟和網路操作來說非常快。所以給CPU提供資料或從CPU向記憶體或另一個CPU發送資料花費了大多數時間。我們使用了非阻塞的操作節省了這方面的時間,例如,task.deferLater()使用了回調函數,當資料已經傳輸完成的時候會被啟動。

另一個很重要的一點是輸出中的Goodmorning from Twisted developer和Bye from Twisted developer!資訊。在程式碼開始執行時就已經列印了這兩個訊息。如果程式碼如此早地執行到了這個地方,那麼我們的應用程式真正開始運行是在什麼時候呢?答案是,對於一個Twisted應用程式(包括Scrapy)來說是在reactor.run()裡運行的。在呼叫這個方法之前,必須先把應用程式中可能用到的每個Deferred鏈準備就緒,然後reactor.run()方法會監視並啟動回呼函數。
注意,reactor的主要一條規則就是,你可以執行任何操作,只要它夠快且是非阻塞的。

現在好了,程式碼中沒有那麼用於管理多執行緒的部分了,不過這些回呼函數看起來還是有些雜亂。可以修改成這樣:

..
 
# 代码片段
 
  def dataReceived(self, data):
    now = int(time.time())
 
    for ftype, data in self.fpcodec.feed(data):
      if ftype == 'oob':
        self.msg('OOB:', repr(data))
      elif ftype == 0x81: # 对服务器请求的心跳应答(这个是解析 防疲劳驾驶仪,发给gps上位机的,然后上位机发给服务器的)
        self.msg('FP.PONG:', repr(data))
      else:
        self.msg('TODO:', (ftype, data))
      d = deferToThread(self.redis.zadd, "beier:fpstat:fps", now, self.devid)
      d.addCallback(self._doResult, extra)
登入後複製


運行的結果和前一個例子相同。這段程式碼的作用和上一個例子是一樣的,但是看起來更簡潔明了。 inlineCallbacks產生器可以使用一些一些Python的機制來使得inline_install()函數暫停或恢復執行。 inline_install()函數變成了一個Deferred物件並且並行地為每個消費者運行。每次yield的時候,運行就會中止在目前的inline_install()實例上,直到yield的Deferred物件完成後再恢復運行。

現在唯一的問題是,如果我們不只15個消費者,而是有,例如10,000個消費者時又該怎麼?這段程式碼會同時開始10000個同時執行的序列(例如HTTP請求、資料庫的寫入操作等等)。這樣做可能沒什麼問題,但也可能產生各種失敗。在有龐大並發請求的應用程式中,例如Scrapy,我們經常需要把並發的數量限製到一個可以接受的程度。在下面的一個範例中,我們使用task.Cooperator()來完成這樣的功能。 Scrapy在它的Item Pipeline中也使用了相同的機制來限制並發的數目(即CONCURRENT_ITEMS設定):

# -*- coding: utf-8 -*-
 
from twisted.internet import defer, reactor
from twisted.internet.threads import deferToThread
 
import functools
import time
 
# 耗时操作 这是一个同步阻塞函数
def mySleep(timeout):
  time.sleep(timeout)
 
  # 返回值相当于加进了callback里
  return 3
 
def say(result):
  print "耗时操作结束了, 并把它返回的结果给我了", result
 
# 用functools.partial包装一下, 传递参数进去
cb = functools.partial(mySleep, 3)
d = deferToThread(cb)
d.addCallback(say)
 
print "你还没有结束我就执行了, 哈哈"
 
reactor.run()
登入後複製
登入後複製

   


到,程式運行時好像有5個處理消費者的插槽。除非一個槽空出來,否則不會開始處理下一個消費者的請求。在這個例子中,處理時間都是3秒,所以看起來像是5個一批次地處理一樣。最後得到的效能跟使用線程是一樣的,但是這次只有一個線程,程式碼也更簡潔更容易寫出正確的程式碼。

PS:deferToThread使同步函數實作非阻塞

wisted的defer.Deferred (from twisted.internet import defer)可以傳回一個deferred物件.🎜🎜注:deferToThread使用執行緒實現的,不建議過多使用🎜***把同步函數變成非同步(回傳一個Deferred)***🎜twisted的deferToThread(from twisted.internet.threads import deferToThread)也回傳一個deferred物件,不過回呼函數在另一個執行緒處理,主要用於資料庫/檔案讀取取操作🎜rrreee🎜   🎜🎜🎜🎜🎜下面這兒完整的例子可以給大家參考一下🎜
# -*- coding: utf-8 -*-
 
from twisted.internet import defer, reactor
from twisted.internet.threads import deferToThread
 
import functools
import time
 
# 耗时操作 这是一个同步阻塞函数
def mySleep(timeout):
  time.sleep(timeout)
 
  # 返回值相当于加进了callback里
  return 3
 
def say(result):
  print "耗时操作结束了, 并把它返回的结果给我了", result
 
# 用functools.partial包装一下, 传递参数进去
cb = functools.partial(mySleep, 3)
d = deferToThread(cb)
d.addCallback(say)
 
print "你还没有结束我就执行了, 哈哈"
 
reactor.run()
登入後複製
登入後複製

更多使用Python的Twisted框架编写非阻塞程序的代码示例相关文章请关注PHP中文网!

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板