首頁 後端開發 Python教學 Python中物件迭代與反迭代的技巧總結

Python中物件迭代與反迭代的技巧總結

Feb 22, 2017 pm 05:10 PM

一、如何實作可迭代物件、迭代器物件?

實際案例

某軟體要求從網路抓取各個城市氣味訊息,並其次顯示:

#
北京: 15 ~ 20 天津: 17 ~ 22 长春: 12 ~ 18 ......
登入後複製

如果一次抓取所有城市天氣再顯示,顯示第一個城市氣溫時,有很高的延時,並且浪費存儲空間,我們期望以用時訪問的策略,並且把所有城市氣溫封裝到一個物件裡,可用for語句進行迭代,如何解決?

解決方案

實作一個迭代器物件Weatherlterator,next方法每次回傳一個城市氣溫,實作一個可迭代物件Weatherlterable,————iter__方法傳回一個迭代器物件

#
import requests from collections import Iterable, Iterator # 气温迭代器 class WeatherIterator(Iterator): def __init__(self, cities): self.cities = cities self.index = 0 def getWeather(self, city): r = requests.get('http://wthrcdn.etouch.cn/weather_mini?city=' + city) data = r.json()['data']['forecast'][0] return '%s:%s , %s' % (city, data['low'], data['high']) def __next__(self): if self.index == len(self.cities): raise StopIteration city = self.cities[self.index] self.index += 1 return self.getWeather(city) # 可迭代对象 class WeatherIterable(Iterable): def __init__(self, cities): self.cities = cities def __iter__(self): return WeatherIterator(self.cities) for x in WeatherIterable(['北京', '上海', '广州', '深圳']): print(x)
登入後複製

執行結果如下:

C:\Python\Python35\python.exe E:/python-intensive-training/s2.py 北京:低温 21℃ , 高温 30℃ 上海:低温 23℃ , 高温 26℃ 广州:低温 26℃ , 高温 34℃ 深圳:低温 27℃ , 高温 33℃ Process finished with exit code 0
登入後複製

二、如何使用生成器函數實作可迭代物件?

實際案例

實作一個可迭代物件的類,它能迭代出給定範圍內所有素數:

python pn = PrimeNumbers(1, 30) for k in pn: print(k) `` 输出结果text
2 3 5 7 11 13 17 19 23 29
“`
登入後複製

解決方案

#-將該類別的__iter__方法實作產生器函數,每次yield傳回一個質數

class PrimeNumbers: def __init__(self, start, stop): self.start = start self.stop = stop def isPrimeNum(self, k): if k < 2: return False for i in range(2, k): if k % i == 0: return False return True def __iter__(self): for k in range(self.start, self.stop + 1): if self.isPrimeNum(k): yield k for x in PrimeNumbers(1, 20): print(x)
登入後複製

#運行結果

##

C:\Python\Python35\python.exe E:/python-intensive-training/s3.py 2 3 5 7 11 13 17 19 Process finished with exit code 0
登入後複製

三、如何進行反向迭代、如何實現反向迭代?

實際案例

實作一個連續浮點數產生器

FloatRange(和rrange類似),根據給定範圍(start, stop)和步進值(step)產生一些列連續浮點數,如迭代FloatRange(3.0,4.0,0.2)可產生序列:

正向:3.0 > 3.2 > 3.4 > 3.6 > 3.8 > 4.0 反向:4.0 > 3.8 > 3.6 > 3.4 > 3.2 > 3.0
登入後複製

##解

#實現反向迭代協定的

__reversed__

方法,它傳回一個反向迭代器

#
class FloatRange: def __init__(self, start, stop, step=0.1): self.start = start self.stop = stop self.step = step def __iter__(self): t = self.start while t <= self.stop: yield t t += self.step def __reversed__(self): t = self.stop while t >= self.start: yield t t -= self.step print("正相迭代-----") for n in FloatRange(1.0, 4.0, 0.5): print(n) print("反迭代-----") for x in reversed(FloatRange(1.0, 4.0, 0.5)): print(x)
登入後複製

##輸出結果

C:\Python\Python35\python.exe E:/python-intensive-training/s4.py 正相迭代----- 1.0 1.5 2.0 2.5 3.0 3.5 4.0 反迭代----- 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Process finished with exit code 0
登入後複製

四、如何對迭代器做切片運算?

實際案例


有某個文字文件,我們想都去其中某一範圍的內容,如100~300行之間的內容,python中文本文件是可迭代對象,我們是否可以使用類似列表切片的方式得到一個100~300行文件內容的生成器?

解決方案

使用標準函式庫中的itertools.islice

,它能傳回一個迭代器物件切片的產生器


from itertools import islice f = open(&#39;access.log&#39;) # # 前500行 # islice(f, 500) # # 100行以后的 # islice(f, 100, None) for line in islice(f,100,300): print(line)
登入後複製

islice每次訓練話語都會消耗先前的迭代物件

l = range(20) t = iter(l) for x in islice(t, 5, 10): print(x) print(&#39;第二次迭代&#39;) for x in t: print(x)
登入後複製

輸出結果

C:\Python\Python35\python.exe E:/python-intensive-training/s5.py 5 6 7 8 9 第二次迭代 10 11 12 13 14 15 16 17 18 19 Process finished with exit code 0
登入後複製

#五、如何在一個for語句中迭代多個可迭代物件?

實際案例

1、某班學生期末考成績,語文、數學、英文分別儲存再3個清單中,同時迭代三個列表,計算每個學生的總分(並行)

2、某年紀有四個班,某次考試沒班英語成績分別儲存在四個列表中,依序迭代每個列表,統計全學年成績高於90分人數(串列)


#解

並行:使用內建函數 zip

,它能將多個可迭代物件合併,每次迭代傳回一個元組


#

from random import randint # 申城语文成绩,# 40人,分数再60-100之间 chinese = [randint(60, 100) for _ in range(40)] math = [randint(60, 100) for _ in range(40)] # 数学 english = [randint(60, 100) for _ in range(40)] # 英语 total = [] for c, m, e in zip(chinese, math, english): total.append(c + m + e) print(total)
登入後複製

執行結果如下:

C:\Python\Python35\python.exe E:/python-intensive-training/s6.py [232, 234, 259, 248, 241, 236, 245, 253, 275, 238, 240, 239, 283, 256, 232, 224, 201, 255, 206, 239, 254, 216, 287, 268, 235, 223, 289, 221, 266, 222, 231, 240, 226, 235, 255, 232, 235, 250, 241, 225] Process finished with exit code 0
登入後複製

序列:使用標準函式庫中的

itertools.chain

,它能將多個可迭代物件連接


from random import randint from itertools import chain # 生成四个班的随机成绩 e1 = [randint(60, 100) for _ in range(40)] e2 = [randint(60, 100) for _ in range(42)] e3 = [randint(60, 100) for _ in range(45)] e4 = [randint(60, 100) for _ in range(50)] # 默认人数=1 count = 0 for s in chain(e1, e2, e3, e4): # 如果当前分数大于90,就让count+1 if s > 90: count += 1 print(count)
登入後複製

輸出結果

C:\Python\Python35\python.exe E:/python-intensive-training/s6.py 48 Process finished with exit code 0
登入後複製

總結

以上就是這篇文章的全部內容,希望對大家的學習或工作帶來一定的幫助,如果有疑問大家可以留言交流。

更多Python中物件迭代與反迭代的技巧總結相關文章請專注於PHP中文網!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1672
14
CakePHP 教程
1428
52
Laravel 教程
1332
25
PHP教程
1276
29
C# 教程
1256
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

科學計算的Python:詳細的外觀 科學計算的Python:詳細的外觀 Apr 19, 2025 am 12:15 AM

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Web開發的Python:關鍵應用程序 Web開發的Python:關鍵應用程序 Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

See all articles