首頁 > Java > java教程 > 主體

Java8 新特性之流式資料處理

黄舟
發布: 2017-02-23 10:28:39
原創
1994 人瀏覽過

摘要: java8的流式處理極大了簡化我們對於集合、數組等結構的操作,讓我們可以以函數式的思想去操作,本篇文章將探討java8的流式資料處理的基本使用。

一. 串流媒體簡介

在我接觸到java8串流處理的時候,我的第一個感覺是串流處理讓集合運算變得簡潔了許多,通常我們需要多行程式碼才能完成的操作,借助於流式處理可以在一行中實現。例如我們希望對一個包含整數的集合中篩選出所有的偶數,並將其封裝成為一個新的List返回,那麼在java8之前,我們需要透過以下程式碼實現:

List<Integer> evens = new ArrayList<>();
for (final Integer num : nums) {
    if (num % 2 == 0) {
        evens.add(num);
    }
}
登入後複製

透過ja​​va8的串流處理,我們可以將程式碼簡化為:

List<Integer> evens = nums.stream().filter(num -> num % 2 == 0).collect(Collectors.toList());
登入後複製


先簡單解釋一下上面這行語句的意義,

stream()
登入後複製
登入後複製
登入後複製
登入後複製

操作將集合轉換成一個流,

filter()
登入後複製

執行我們自訂的篩選處理,這裡是透過lambda表達式篩選出所有偶數,最後我們透過

collect()
登入後複製

對結果進行封裝處理,並透過

Collectors.toList()
登入後複製
登入後複製

指定其封裝成為一個List集合傳回。

由上面的例子可以看出,java8的流式處理極大的簡化了對於集合的操作,實際上不光是集合,包括數組、文件等,只要是可以轉換成流,我們都可以藉助串流處理,類似我們寫SQL語句一樣對其進行操作。 java8透過內部迭代來實現對流的處理,一個流式處理可以分為三個部分:轉換成流、中間操作、終端操作。如下圖:

Java8 新特性之流式資料處理

以集合為例,一個串流處理的操作我們首先需要呼叫

stream()
登入後複製
登入後複製
登入後複製
登入後複製

函數將其轉換成流,然後再調用對應的

中间操作
登入後複製

達到我們需要對集合進行的操作,例如篩選、轉換等,最後透過

终端操作
登入後複製

對前面的結果進行封裝,傳回我們需要的形式。

二. 中間運算

我們定義一個簡單的學生實體類,用於後面的範例示範:

##

public class Student {
    /** 学号 */
    private long id;
    private String name;
    private int age;
    /** 年级 */
    private int grade;
    /** 专业 */
    private String major;
    /** 学校 */
    private String school;
    // 省略getter和setter
}
// 初始化
List<Student> students = new ArrayList<Student>() {
    {
        add(new Student(20160001, "孔明", 20, 1, "土木工程", "武汉大学"));
        add(new Student(20160002, "伯约", 21, 2, "信息安全", "武汉大学"));
        add(new Student(20160003, "玄德", 22, 3, "经济管理", "武汉大学"));
        add(new Student(20160004, "云长", 21, 2, "信息安全", "武汉大学"));
        add(new Student(20161001, "翼德", 21, 2, "机械与自动化", "华中科技大学"));
        add(new Student(20161002, "元直", 23, 4, "土木工程", "华中科技大学"));
        add(new Student(20161003, "奉孝", 23, 4, "计算机科学", "华中科技大学"));
        add(new Student(20162001, "仲谋", 22, 3, "土木工程", "浙江大学"));
        add(new Student(20162002, "鲁肃", 23, 4, "计算机科学", "浙江大学"));
        add(new Student(20163001, "丁奉", 24, 5, "土木工程", "南京大学"));
    }
};
登入後複製

2.1 過濾

過濾,顧名思義就是按照給定的要求對集合進行篩選滿足條件的元素,java8提供的篩選操作包括:filter、distinct、limit、skip。



filter
在前面的範例中我們已經示範如何使用filter,其定義為:

Stream<T> filter(Predicate<? super T> predicate)
登入後複製

,filter接受一個謂詞

Predicate
登入後複製
登入後複製

,我們可以透過這個謂詞定義篩選條件,在介紹lambda表達式時我們介紹過

Predicate
登入後複製
登入後複製

是一個函數式接口,其包含一個

test(T t)
登入後複製

方法,該方法返回

boolean
登入後複製

。現在我們希望從集合

students
登入後複製

中篩選出所有武漢大學的學生,那麼我們可以透過filter來實現,並將篩選操作作為參數傳遞給filter:



List<Student> whuStudents = students.stream()
                                    .filter(student -> "武汉大学".equals(student.getSchool()))
                                    .collect(Collectors.toList());
登入後複製

distinct
distinct運算類似於我們在寫SQL語句時,新增的

DISTINCT
登入後複製

關鍵字,用於去重處理,distinct基於

Object.equals(Object)
登入後複製

實現,回到最開始的例子,假設我們希望篩選出所有不重複的偶數,那麼可以添加distinct操作:



List<Integer> evens = nums.stream()
                        .filter(num -> num % 2 == 0).distinct()
                        .collect(Collectors.toList());
登入後複製

limit
limit運算也類似SQL語句中的

LIMIT
登入後複製

關鍵字,不過相對功能較弱,limit傳回包含前n個元素的流,當集合大小小於n時,則返回實際長度,例如下面的例子返回前兩個專業為

土木工程
登入後複製

專業的學生:



List<Student> civilStudents = students.stream()
                                    .filter(student -> "土木工程".equals(student.getMajor())).limit(2)
                                    .collect(Collectors.toList());
登入後複製

說到limit,不得不提及一下另外一個流操作:


sorted
登入後複製

。此操作用於對流中元素進行排序,sorted要求待比較的元素必須實現

Comparable
登入後複製

接口,如果沒有實現也不要緊,我們可以將比較器作為參數傳遞給

sorted(Comparator<? super T> comparator)
登入後複製

,例如我們希望篩選出專業為土木工程的學生,並且按年齡從小到大排序,篩選出年齡最小的兩個學生,那麼可以實現為:



List<Student> sortedCivilStudents = students.stream()
                                            .filter(student -> "土木工程".equals(student.getMajor())).sorted((s1, s2) -> s1.getAge() - s2.getAge())
                                            .limit(2)
                                            .collect(Collectors.toList());
登入後複製

# skip
skip操作與limit操作相反,如同其字面意思一樣,是跳過前n個元素,比如我們希望找出排序在2之後的土木工程專業的學生,那麼可以實現為:


List<Student> civilStudents = students.stream()
                                    .filter(student -> "土木工程".equals(student.getMajor()))
                                    .skip(2)
                                    .collect(Collectors.toList());
登入後複製

透過skip,就會跳過前面兩個元素,傳回由後面所有元素建構的流,如果n大於滿足條件的集合的長度,則會傳回一個空的集合。



2.2 映射

在SQL中,借助

SELECT
登入後複製

關鍵字後面新增所需的欄位名稱,可以只輸出我們需要的欄位數據,而串流處理的映射操作也是實現這一目的,在java8的串流處理中,主要包含兩類映射操作:map和flatMap。



map
舉例說明,假設我們希望篩選出所有專業為電腦科學的學生姓名,那麼我們可以在filter篩選的基礎之上,透過map將學生實體映射成為學生姓名字串,具體實現如下:


List<String> names = students.stream()
                            .filter(student -> "计算机科学".equals(student.getMajor()))
                            .map(Student::getName).collect(Collectors.toList());
登入後複製

除了上面这类基础的map,java8还提供了

mapToDouble(ToDoubleFunction<? super T> mapper)
登入後複製

mapToInt(ToIntFunction<? super T> mapper)
登入後複製

mapToLong(ToLongFunction<? super T> mapper)
登入後複製

,这些映射分别返回对应类型的流,java8为这些流设定了一些特殊的操作,比如我们希望计算所有专业为计算机科学学生的年龄之和,那么我们可以实现如下:

int totalAge = students.stream()
                    .filter(student -> "计算机科学".equals(student.getMajor()))
                    .mapToInt(Student::getAge).sum();
登入後複製

通过将Student按照年龄直接映射为

IntStream
登入後複製
登入後複製
登入後複製

,我们可以直接调用提供的

sum()
登入後複製

方法来达到目的,此外使用这些数值流的好处还在于可以避免jvm装箱操作所带来的性能消耗。

flatMap

flatMap与map的区别在于 flatMap是将一个流中的每个值都转成一个个流,然后再将这些流扁平化成为一个流 。举例说明,假设我们有一个字符串数组

String[] strs = {"java8", "is", "easy", "to", "use"};
登入後複製

,我们希望输出构成这一数组的所有非重复字符,那么我们可能首先会想到如下实现:

List<String[]> distinctStrs = Arrays.stream(strs)
                                .map(str -> str.split(""))  // 映射成为Stream<String[]>
                                .distinct()
                                .collect(Collectors.toList());
登入後複製

在执行map操作以后,我们得到是一个包含多个字符串(构成一个字符串的字符数组)的流,此时执行distinct操作是基于在这些字符串数组之间的对比,所以达不到我们希望的目的,此时的输出为:

[j, a, v, a, 8]
[i, s]
[e, a, s, y]
[t, o]
[u, s, e]
登入後複製

distinct只有对于一个包含多个字符的流进行操作才能达到我们的目的,即对

Stream<String>
登入後複製
登入後複製

进行操作。此时flatMap就可以达到我们的目的:

List distinctStrs = Arrays.stream(strs)
                                .map(str -> str.split(""))  // 映射成为Stream<String[]>
                                .flatMap(Arrays::stream)  // 扁平化为Stream<String>
                                .distinct()
                                .collect(Collectors.toList());
登入後複製

flatMap将由map映射得到的

Stream<String[]>
登入後複製

,转换成由各个字符串数组映射成的流

Stream<String>
登入後複製
登入後複製

,再将这些小的流扁平化成为一个由所有字符串构成的大流

Steam<String>
登入後複製

,从而能够达到我们的目的。

与map类似,flatMap也提供了针对特定类型的映射操作:

flatMapToDouble(Function<? super T,? extends DoubleStream> mapper)
登入後複製

flatMapToInt(Function<? super T,? extends IntStream> mapper)
登入後複製

flatMapToLong(Function<? super T,? extends LongStream> mapper)
登入後複製



三. 终端操作

终端操作是流式处理的最后一步,我们可以在终端操作中实现对流查找、归约等操作。

3.1 查找

allMatch

allMatch用于检测是否全部都满足指定的参数行为,如果全部满足则返回true,例如我们希望检测是否所有的学生都已满18周岁,那么可以实现为:

boolean isAdult = students.stream().allMatch(student -> student.getAge() >= 18);
anyMatch

anyMatch则是检测是否存在一个或多个满足指定的参数行为,如果满足则返回true,例如我们希望检测是否有来自武汉大学的学生,那么可以实现为:

boolean hasWhu = students.stream().anyMatch(student -> "武汉大学".equals(student.getSchool()));
noneMathch

noneMatch用于检测是否不存在满足指定行为的元素,如果不存在则返回true,例如我们希望检测是否不存在专业为计算机科学的学生,可以实现如下:

boolean noneCs = students.stream().noneMatch(student -> "计算机科学".equals(student.getMajor()));
findFirst

findFirst用于返回满足条件的第一个元素,比如我们希望选出专业为土木工程的排在第一个学生,那么可以实现如下:

Optional optStu = students.stream().filter(student -> "土木工程".equals(student.getMajor())).findFirst();
findFirst不携带参数,具体的查找条件可以通过filter设置,此外我们可以发现findFirst返回的是一个Optional类型,关于该类型的具体讲解可以参考上一篇:Java8新特性 – Optional类。

findAny

findAny相对于findFirst的区别在于,findAny不一定返回第一个,而是返回任意一个,比如我们希望返回任意一个专业为土木工程的学生,可以实现如下:

Optional optStu = students.stream().filter(student -> "土木工程".equals(student.getMajor())).findAny();
实际上对于顺序流式处理而言,findFirst和findAny返回的结果是一样的,至于为什么会这样设计,是因为在下一篇我们介绍的并行流式处理,当我们启用并行流式处理的时候,查找第一个元素往往会有很多限制,如果不是特别需求,在并行流式处理中使用findAny的性能要比findFirst好。

3.2 归约

前面的例子中我们大部分都是通过

collect(Collectors.toList())
登入後複製
登入後複製

对数据封装返回,如我的目标不是返回一个新的集合,而是希望对经过参数化操作后的集合进行进一步的运算,那么我们可用对集合实施归约操作。java8的流式处理提供了

reduce
登入後複製

方法来达到这一目的。

前面我们通过mapToInt将

Stream<Student>
登入後複製

映射成为

IntStream
登入後複製
登入後複製
登入後複製

,并通过

IntStream
登入後複製
登入後複製
登入後複製

的sum方法求得所有学生的年龄之和,实际上我们通过归约操作,也可以达到这一目的,实现如下:

// 前面例子中的方法
int totalAge = students.stream()
                .filter(student -> "计算机科学".equals(student.getMajor()))
                .mapToInt(Student::getAge).sum();
// 归约操作
int totalAge = students.stream()
                .filter(student -> "计算机科学".equals(student.getMajor()))
                .map(Student::getAge)
                .reduce(0, (a, b) -> a + b);
// 进一步简化
int totalAge2 = students.stream()
                .filter(student -> "计算机科学".equals(student.getMajor()))
                .map(Student::getAge)
                .reduce(0, Integer::sum);
// 采用无初始值的重载版本,需要注意返回Optional
Optional<Integer> totalAge = students.stream()
                .filter(student -> "计算机科学".equals(student.getMajor()))
                .map(Student::getAge)
                .reduce(Integer::sum);  // 去掉初始值
登入後複製

3.3 收集

前面利用

collect(Collectors.toList())
登入後複製
登入後複製

是一个简单的收集操作,是对处理结果的封装,对应的还有

toSet
登入後複製

toMap
登入後複製

,以满足我们对于结果组织的需求。这些方法均来自于

java.util.stream.Collectors
登入後複製

,我们可以称之为收集器。

3.3.1 归约

收集器也提供了相应的归约操作,但是与reduce在内部实现上是有区别的,收集器更加适用于可变容器上的归约操作,这些收集器广义上均基于

Collectors.reducing()
登入後複製

实现。

例1:求学生的总人数

long count = students.stream().collect(Collectors.counting());
// 进一步简化
long count = students.stream().count();
登入後複製

例2:求年龄的最大值和最小值

// 求最大年龄
Optional<Student> olderStudent = students.stream().collect(Collectors.maxBy((s1, s2) -> s1.getAge() - s2.getAge()));
// 进一步简化
Optional<Student> olderStudent2 = students.stream().collect(Collectors.maxBy(Comparator.comparing(Student::getAge)));
// 求最小年龄
Optional<Student> olderStudent3 = students.stream().collect(Collectors.minBy(Comparator.comparing(Student::getAge)));
登入後複製

例3:求年龄总和

int totalAge4 = students.stream().collect(Collectors.summingInt(Student::getAge));
对应的还有

summingLong
登入後複製

summingDouble
登入後複製



例4:求年龄的平均值

double avgAge = students.stream().collect(Collectors.averagingInt(Student::getAge));
对应的还有

averagingLong
登入後複製

averagingDouble
登入後複製



例5:一次性得到元素个数、总和、均值、最大值、最小值

IntSummaryStatistics statistics = students.stream().collect(Collectors.summarizingInt(Student::getAge));
输出:

IntSummaryStatistics{count=10, sum=220, min=20, average=22.000000, max=24}
对应的还有

summarizingLong
登入後複製

summarizingDouble
登入後複製



例6:字符串拼接

String names = students.stream().map(Student::getName).collect(Collectors.joining());
// 输出:孔明伯约玄德云长翼德元直奉孝仲谋鲁肃丁奉
String names = students.stream().map(Student::getName).collect(Collectors.joining(", "));
// 输出:孔明, 伯约, 玄德, 云长, 翼德, 元直, 奉孝, 仲谋, 鲁肃, 丁奉

3.3.2 分组

在数据库操作中,我们可以通过

GROUP BY
登入後複製

关键字对查询到的数据进行分组,java8的流式处理也为我们提供了这样的功能

Collectors.groupingBy
登入後複製

来操作集合。比如我们可以按学校对上面的学生进行分组:

Map> groups = students.stream().collect(Collectors.groupingBy(Student::getSchool));

groupingBy
登入後複製
登入後複製

接收一个分类器

Function<? super T, ? extends K> classifier
登入後複製

,我们可以自定义分类器来实现需要的分类效果。

上面演示的是一级分组,我们还可以定义多个分类器实现 多级分组,比如我们希望在按学校分组的基础之上再按照专业进行分组,实现如下:

Map>> groups2 = students.stream().collect(
Collectors.groupingBy(Student::getSchool, // 一级分组,按学校
Collectors.groupingBy(Student::getMajor))); // 二级分组,按专业
实际上在

groupingBy
登入後複製
登入後複製

的第二个参数不是只能传递groupingBy,还可以传递任意

Collector
登入後複製

类型,比如我们可以传递一个

Collector.counting
登入後複製

,用以统计每个组的个数:

Map groups = students.stream().collect(Collectors.groupingBy(Student::getSchool, Collectors.counting()));
如果我们不添加第二个参数,则编译器会默认帮我们添加一个

Collectors.toList()
登入後複製
登入後複製



3.3.3 分区

分区可以看做是分组的一种特殊情况,在分区中key只有两种情况:true或false,目的是将待分区集合按照条件一分为二,java8的流式处理利用

ollectors.partitioningBy()
登入後複製

方法实现分区,该方法接收一个谓词,例如我们希望将学生分为武大学生和非武大学生,那么可以实现如下:

Map> partition = students.stream().collect(Collectors.partitioningBy(student -> "武汉大学".equals(student.getSchool())));
分区相对分组的优势在于,我们可以同时得到两类结果,在一些应用场景下可以一步得到我们需要的所有结果,比如将数组分为奇数和偶数。

以上介绍的所有收集器均实现自接口

java.util.stream.Collector
登入後複製

,该接口的定义如下:

public interface Collector<T, A, R> {
    /**
     * A function that creates and returns a new mutable result container.
     *
     * @return a function which returns a new, mutable result container
     */
    Supplier<A> supplier();
    /**
     * A function that folds a value into a mutable result container.
     *
     * @return a function which folds a value into a mutable result container
     */
    BiConsumer<A, T> accumulator();
    /**
     * A function that accepts two partial results and merges them.  The
     * combiner function may fold state from one argument into the other and
     * return that, or may return a new result container.
     *
     * @return a function which combines two partial results into a combined
     * result
     */
    BinaryOperator<A> combiner();
    /**
     * Perform the final transformation from the intermediate accumulation type
     * {@code A} to the final result type {@code R}.
     *
     * <p>If the characteristic {@code IDENTITY_TRANSFORM} is
     * set, this function may be presumed to be an identity transform with an
     * unchecked cast from {@code A} to {@code R}.
     *
     * @return a function which transforms the intermediate result to the final
     * result
     */
    Function<A, R> finisher();
    /**
     * Returns a {@code Set} of {@code Collector.Characteristics} indicating
     * the characteristics of this Collector.  This set should be immutable.
     *
     * @return an immutable set of collector characteristics
     */
    Set<Characteristics> characteristics();
}
登入後複製

我们也可以实现该接口来定义自己的收集器,此处不再展开。

四. 并行流式数据处理

流式处理中的很多都适合采用 分而治之 的思想,从而在处理集合较大时,极大的提高代码的性能,java8的设计者也看到了这一点,所以提供了 并行流式处理。上面的例子中我们都是调用

stream()
登入後複製
登入後複製
登入後複製
登入後複製

方法来启动流式处理,java8还提供了

parallelStream()
登入後複製
登入後複製
登入後複製

来启动并行流式处理,

parallelStream()
登入後複製
登入後複製
登入後複製

本质上基于java7的Fork-Join框架实现,其默认的线程数为宿主机的内核数。

启动并行流式处理虽然简单,只需要将

stream()
登入後複製
登入後複製
登入後複製
登入後複製

替换成

parallelStream()
登入後複製
登入後複製
登入後複製

即可,但既然是并行,就会涉及到多线程安全问题,所以在启用之前要先确认并行是否值得(并行的效率不一定高于顺序执行),另外就是要保证线程安全。此两项无法保证,那么并行毫无意义,毕竟结果比速度更加重要,以后有时间再来详细分析一下并行流式数据处理的具体实现和最佳实践。

 以上就是Java8 新特性之流式数据处理 的内容,更多相关内容请关注PHP中文网(www.php.cn)!


來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板