首頁 後端開發 Python教學 深入理解NumPy簡明教程---陣列1

深入理解NumPy簡明教程---陣列1

Feb 23, 2017 pm 04:50 PM

這篇文章主要介紹了深入理解NumPy簡明教程(二、數組1),NumPy數組是一個多維數組對象,具有一定的參考價值,感興趣的小伙伴們可以參考一下。

目前我的工作是將NumPy引入Pyston(一款Dropbox實作的Python編譯器/解譯器)。在工作過程中,我深入接觸了NumPy原始碼,了解其實作並提交了PR修復NumPy的bug。在與NumPy原始碼以及NumPy開發者打交道的過程中,我發現當今中文NumPy教程大部分都是翻譯或參考英文文檔,因此導致了許多疏漏。例如NumPy數組中的broadcast功能,幾乎所有中文文件都翻譯為「廣播」。而NumPy的開發者之一,回覆到「broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含義)"。有鑑於此,我打算啟動一個項目,以我對NumPy使用以及源碼層面的了解編寫一個系列的教程。 #NumPy數組


NumPy數組是一個多維數組對象,稱為ndarray。

#描述這些資料的元資料

  • 大部分運算只針對於元數據,而不改變底層實際的資料。 #關於NumPy數組有幾點必需了解的:

  • NumPy數組的下標從0開始。元素的型別必須是相同的。

    在詳細介紹NumPy陣列之前。類推。每個元素又是一個一維數組。 ,就是數組的維數。 (即陣列軸的個數),等於秩。維度上大小的整數元組。

##ndarray.size:陣列元素的總個數,等於shape屬性中元組元素的乘積。

    ndarray.dtype:表示陣列中元素類型的對象,可使用標準的Python類型建立或指定dtype。另外也可使用前一篇文章中介紹的NumPy提供的資料類型。
  • ndarray.itemsize:陣列中每個元素的位元組大小。例如,一個元素類型為float64的陣列itemsiz屬性值為8(float64佔用64個bits,每個位元組長度為8,所以64/8,佔用8個位元組),又如,一個元素類型為complex32的數組item屬性為4(32/8)。
  • ndarray.data:包含實際陣列元素的緩衝區,由於一般透過陣列的索引取得元素,所以通常不需要使用這個屬性。

  • 建立陣列

先來介紹建立陣列。創建數組的方法有很多。如可以使用array函數從常規的Python列表和元組創造數組。所建立的數組類型由原始序列中的元素類型推導出來。    

>>> from numpy import *     
>>> a = array( [2,3,4] )    
>>> a 
  array([2, 3, 4]) 
>>> a.dtype 
  dtype('int32') 
>>> b = array([1.2, 3.5, 5.1])    
>>> b.dtype 
  dtype('float64')
登入後複製

使用array函數建立時,參數必須是由方括號括起來的列表,而不能使用多個數值作為參數呼叫array。   

  • >>> a = array(1,2,3,4)  # 错误 
    >>> a = array([1,2,3,4]) # 正确
    登入後複製

  • 可使用雙重序列來表示二維的數組,三重序列表示三維數組,以此類推。
  • >>> b = array( [ (1.5,2,3), (4,5,6) ] )   
    >>> b 
      array([[ 1.5, 2. , 3. ], 
          [ 4. , 5. , 6. ]])
    登入後複製
  • 可以在建立時明確指定數組中元素的類型

  • >>> c = array( [ [1,2], [3,4] ], dtype=complex) 
    >>> c 
      array([[ 1.+0.j, 2.+0.j], 
         [ 3.+0.j, 4.+0.j]])
    登入後複製

  • 通常,剛開始時數組的元素未知,而數組的大小已知。因此,NumPy提供了一些使用佔位符建立數組的函數。這些函數有助於滿足除了數組擴展的需要,同時降低了高昂的運算開銷。
  • 用函數zeros可建立一個全是0的數組,用函數ones可建立一個全為1的數組,函數empty創建一個內容隨機並且依賴與記憶體狀態的數組。預設創建的數組類型(dtype)都是float64。
  • 可以喲娜特d.dtype.itemsize來查看陣列中元素所佔用的位元組數目。

  • >>> d = zeros((3,4)) 
    >>> d.dtype 
    dtype('float64') 
    >>> d 
    array([[ 0., 0., 0., 0.], 
        [ 0., 0., 0., 0.], 
        [ 0., 0., 0., 0.]]) 
    >>> d.dtype.itemsize 
    8
    登入後複製

也可以自己制定陣列中元素的型別

>>> ones( (2,3,4), dtype=int16 ) #手动指定数组中元素类型 
   array([[[1, 1, 1, 1], 
       [1, 1, 1, 1], 
       [1, 1, 1, 1]], 
    
       [[1, 1, 1, 1], 
       [1, 1, 1, 1], 
       [1, 1, 1, 1]]], dtype=int16) 
>>> empty((2,3)) 
   array([[ 2.65565858e-316,  0.00000000e+000,  0.00000000e+000], 
       [ 0.00000000e+000,  0.00000000e+000,  0.00000000e+000]])
登入後複製

NumPy提供一个类似arange的函数返回一个数列形式的数组:

>>> arange(10, 30, 5) 
  array([10, 15, 20, 25])
登入後複製

以10开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数: 

>>> arange(0,2,0.5) 
  array([ 0. , 0.5, 1. , 1.5])
登入後複製

当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。

>>> numpy.linspace(-1, 0, 5) 
    array([-1. , -0.75, -0.5 , -0.25, 0. ])
登入後複製

数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。

知识点:NumPy中的数据类型

对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:

NumPy中的基本数据类型


NumPy中的基本数据类型
名称描述
bool用一个字节存储的布尔类型(True或False)
inti由所在平台决定其大小的整数(一般为int32或int64)
int8一个字节大小,-128 至 127
int16整数,-32768 至 32767
int32整数,-2 ** 31 至 2 ** 32 -1
int64整数,-2 ** 63 至 2 ** 63 - 1
uint8无符号整数,0 至 255
uint16无符号整数,0 至 65535
uint32无符号整数,0 至 2 ** 32 - 1
uint64无符号整数,0 至 2 ** 64 - 1
float16半精度浮点数:16位,正负号1位,指数5位,精度10位
float32单精度浮点数:32位,正负号1位,指数8位,精度23位
float64或float双精度浮点数:64位,正负号1位,指数11位,精度52位
complex64复数,分别用两个32位浮点数表示实部和虚部
complex128或complex复数,分别用两个64位浮点数表示实部和虚部

NumPy类型转换方式如下:

>>> float64(42) 
  42.0 
>>> int8(42.0) 
  42 
>>> bool(42) 
  True 
>>> bool(42.0) 
  True 
>>> float(True) 
  1.0
登入後複製

许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:

>>> arange(7, dtype=uint16) 
  array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)
登入後複製

输出数组

当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:

  • 第一行从左到右输出

  • 每行依次自上而下输出

  • 每个切片通过一个空行与下一个隔开

  • 一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。 

>>> a = arange(6)             # 1d array 
>>> print a 
  [0 1 2 3 4 5] 
    
>>> b = arange(12).reshape(4,3)      # 2d array 
>>> print b 
  [[ 0 1 2] 
  [ 3 4 5] 
  [ 6 7 8] 
  [ 9 10 11]]    
>>> c = arange(24).reshape(2,3,4)     # 3d array 
>>> print c 
  [[[ 0 1 2 3] 
  [ 4 5 6 7] 
  [ 8 9 10 11]] 
    
  [[12 13 14 15] 
  [16 17 18 19] 
  [20 21 22 23]]]
登入後複製

reshape将在下一篇文章中介绍 

如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据:   

>>> print arange(10000) 
   [  0  1  2 ..., 9997 9998 9999] 
    
>>> print arange(10000).reshape(100,100) 
   [[  0  1  2 ...,  97  98  99] 
    [ 100 101 102 ..., 197 198 199] 
    [ 200 201 202 ..., 297 298 299] 
    ..., 
    [9700 9701 9702 ..., 9797 9798 9799] 
    [9800 9801 9802 ..., 9897 9898 9899] 
    [9900 9901 9902 ..., 9997 9998 9999]]
登入後複製

可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组。

set_printoptions(threshold='nan')
登入後複製

这样,输出时数组的所有元素都会显示出来。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持PHP中文网。

更多深入理解NumPy简明教程---数组1相关文章请关注PHP中文网!


本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1653
14
CakePHP 教程
1413
52
Laravel 教程
1306
25
PHP教程
1251
29
C# 教程
1224
24
Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

您可以在2小時內學到多少python? 您可以在2小時內學到多少python? Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時的Python計劃:一種現實的方法 2小時的Python計劃:一種現實的方法 Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python:探索其主要應用程序 Python:探索其主要應用程序 Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

See all articles