目錄
引言
描述子的定義
描述子基礎
描述子的原理
描述子觸發
優先權" >描述子優先權
在运行时创建描述符
静态方法和类方法" >静态方法和类方法
静态方法
类方法
其他的魔术方法
getattr
应用
getitem
首頁 後端開發 Python教學 Python黑魔法之描述符的使用介紹

Python黑魔法之描述符的使用介紹

Mar 17, 2017 pm 05:36 PM
python

引言

Descriptors(描述詞)是Python語言中一個深奧但很重要的一個黑魔法,它被廣泛應用於Python語言的內核,熟練描述符將會為Python程式設計師的工具箱添加一個額外的技巧。本文我將講述描述符的定義以及一些常見的場景,並且在文末會補充一下getattrgetattributegetitem這三個同樣涉及到屬性訪問的魔術方法

描述子的定義

descrget(self, obj, objtype=None) --> value
descr.set(self, obj, value) --> None
descr.delete(self, obj) --> None
登入後複製

只要一個<a href="http://www.php.cn/wiki/60.html" target="_blank">object</a> attribute(物件屬性)定義了上面三個方法中的任一個,那麼這個類別就可以稱為描述符類別。

描述子基礎

下面這個範例中我們建立了一個RevealAcess類,並且實作了get方法,現在這個類別可以被稱為為一個描述符類別。

class RevealAccess(object):
    def get(self, obj, objtype):
        print(&#39;self in RevealAccess: {}&#39;.format(self))
        print(&#39;self: {}\nobj: {}\nobjtype: {}&#39;.format(self, obj, objtype))
class MyClass(object):
    x = RevealAccess()
    def test(self):
        print(&#39;self in MyClass: {}&#39;.format(self))
登入後複製

EX1實例屬性

接下來我們來看一下get方法的各個參數的意義,在下面這個例子中,self即RevealAccess類別的實例x,obj即MyClass類別的實例m,objtype顧名思義就是MyClass類別本身。從輸出語句可以看出,m.x存取描述子x會呼叫get方法。

>>> m = MyClass()
>>> m.test()
self in MyClass: <main.MyClass object at 0x7f19d4e42160>
>>> m.x
self in RevealAccess: <main.RevealAccess object at 0x7f19d4e420f0>
self: <main.RevealAccess object at 0x7f19d4e420f0>
obj: <main.MyClass object at 0x7f19d4e42160>
objtype: <class &#39;main.MyClass&#39;>
登入後複製

EX2類別屬性

如果透過類別直接存取屬性x,那麼obj接直接為None,這還是比較好理解,因為不存在MyClass的實例。

>>> MyClass.x
self in RevealAccess: <main.RevealAccess object at 0x7f53651070f0>
self: <main.RevealAccess object at 0x7f53651070f0>
obj: None
objtype: <class &#39;main.MyClass&#39;>
登入後複製

描述子的原理

描述子觸發

上面這個例子中,我們分別從實例屬性和類別屬性的角度列舉了描述符的用法,下面我們來仔細分析一下內部的原理:

  • 如果是對實例屬性進行訪問,實際上呼叫了基底類別object的getattribute方法,在這個方法中將obj.d轉譯成了type(obj).dict['d'].get(obj, type(obj))

  • 如果是對類別屬性進行訪問,相當於呼叫了元類別type的getattribute方法,它將cls.d轉譯成cls. dict['d'].get(None, cls),這裡get()的obj為的None,因為不存在實例。

簡單講一下getattribute魔術方法,這個方法在我們訪問一個物件的屬性的時候會被無條件調用,詳細的細節例如和getattr getitem的差異我會在文章的最後做一個額外的補充,我們暫時並不深究。

描述子優先權

首先,描述子分成兩種:

  • 如果一個物件同時定義了get ()和set()方法,則這個描述子稱為data descriptor

  • 如果一個物件只定義了get()方法,則這個描述子被稱為non-data descriptor

我們對屬性進行存取的時候存在以下四種情況:

  • #data descriptor

  • # #instance dict

  • non-data descriptor

  • #getattr()

它們的優先權大小是:

data descriptor > instance dict > non-data descriptor > getattr()
登入後複製

這是什麼意思呢?是說如果實例物件obj中出現了同名的

data descriptor->d 和 instance attribute->dobj.d對屬性#d進行存取的時候,由於data descriptor具有更高的優先權,Python便會呼叫type(obj).dict['d'].get(obj, type(obj))而不是調用obj.dict['d']。但如果描述子是個non-data descriptor,Python則會呼叫obj.dict['d']

Property

每次使用描述符的時候都會定義一個描述符類,看起來非常繁瑣。 Python提供了一種簡潔的方式用來為屬性添加資料描述符。

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute
登入後複製

fget、fset和fdel分別是類別的getter、setter和deleter方法。我們透過下面的範例來說明如何使用Property:

class Account(object):
    def init(self):
        self._acct_num = None
    def get_acct_num(self):
        return self._acct_num
    def set_acct_num(self, value):
        self._acct_num = value
    def del_acct_num(self):
        del self._acct_num
    acct_num = property(get_acct_num, set_acct_num, del_acct_num, &#39;_acct_num property.&#39;)
登入後複製

如果acct是Account的一個實例,acct.acct_num將會呼叫getter,acct.acct_num = value將呼叫setter,del acct_num.acct_num將會呼叫deleter。

>>> acct = Account()
>>> acct.acct_num = 1000
>>> acct.acct_num
1000
登入後複製

Python也提供了

@property裝飾器,對於簡單的應用場景可以使用它來建立屬性。一個屬性物件擁有getter,setter和deleter裝飾器方法,可以使用它們透過對應的被裝飾函數的accessor函數來建立屬性的拷貝。

class Account(object):
    def init(self):
        self._acct_num = None
    @property
     # the _acct_num property. the decorator creates a read-only property
    def acct_num(self):
        return self._acct_num
    @acct_num.setter
    # the _acct_num property setter makes the property writeable
    def set_acct_num(self, value):
        self._acct_num = value
    @acct_num.deleter
    def del_acct_num(self):
        del self._acct_num
登入後複製

如果想讓屬性只讀,只要要去掉setter方法。

在运行时创建描述符

我们可以在运行时添加property属性:

class Person(object):
    def addProperty(self, attribute):
        # create local setter and getter with a particular attribute name
        getter = lambda self: self._getProperty(attribute)
        setter = lambda self, value: self._setProperty(attribute, value)
        # construct property attribute and add it to the class
        setattr(self.class, attribute, property(fget=getter, \
                                                    fset=setter, \
                                                    doc="Auto-generated method"))
    def _setProperty(self, attribute, value):
        print("Setting: {} = {}".format(attribute, value))
        setattr(self, &#39;_&#39; + attribute, value.title())
    def _getProperty(self, attribute):
        print("Getting: {}".format(attribute))
        return getattr(self, &#39;_&#39; + attribute)
登入後複製
>>> user = Person()
>>> user.addProperty(&#39;name&#39;)
>>> user.addProperty(&#39;phone&#39;)
>>> user.name = &#39;john smith&#39;
Setting: name = john smith
>>> user.phone = &#39;12345&#39;
Setting: phone = 12345
>>> user.name
Getting: name
&#39;John Smith&#39;
>>> user.dict
{&#39;_phone&#39;: &#39;12345&#39;, &#39;_name&#39;: &#39;John Smith&#39;}
登入後複製

静态方法和类方法

我们可以使用描述符来模拟Python中的@<a href="http://www.php.cn/wiki/188.html" target="_blank">static</a>method@classmethod的实现。我们首先来浏览一下下面这张表:

TransformationCalled from an ObjectCalled from a Class
functionf(obj, *args)f(*args)
staticmethodf(*args)f(*args)
classmethodf(type(obj), *args)f(klass, *args)

静态方法

对于静态方法fc.fC.f是等价的,都是直接查询object.getattribute(c, ‘f’)或者object.getattribute(C, ’f‘)。静态方法一个明显的特征就是没有self变量

静态方法有什么用呢?假设有一个处理专门数据的容器类,它提供了一些方法来求平均数,中位数等统计数据方式,这些方法都是要依赖于相应的数据的。但是类中可能还有一些方法,并不依赖这些数据,这个时候我们可以将这些方法声明为静态方法,同时这也可以提高代码的可读性。

使用非数据描述符来模拟一下静态方法的实现:

class StaticMethod(object):
    def init(self, f):
        self.f = f
    def get(self, obj, objtype=None):
        return self.f
登入後複製

我们来应用一下:

class MyClass(object):
    @StaticMethod
    def get_x(x):
        return x
print(MyClass.get_x(100))  # output: 100
登入後複製

类方法

Python的@classmethod@staticmethod的用法有些类似,但是还是有些不同,当某些方法只需要得到类的<a href="http://www.php.cn/wiki/231.html" target="_blank">引用</a>而不关心类中的相应的数据的时候就需要使用classmethod了。

使用非数据描述符来模拟一下类方法的实现:

class ClassMethod(object):
    def init(self, f):
        self.f = f
    def get(self, obj, klass=None):
        if klass is None:
            klass = type(obj)
        def newfunc(*args):
            return self.f(klass, *args)
        return newfunc
登入後複製

其他的魔术方法

首次接触Python魔术方法的时候,我也被get, getattribute, getattr, getitem之间的区别困扰到了,它们都是和属性访问相关的魔术方法,其中重写getattrgetitem来构造一个自己的集合类非常的常用,下面我们就通过一些例子来看一下它们的应用。

getattr

Python默认访问类/实例的某个属性都是通过getattribute来调用的,getattribute会被无条件调用,没有找到的话就会调用getattr。如果我们要定制某个类,通常情况下我们不应该重写getattribute,而是应该重写getattr,很少看见重写getattribute的情况。

从下面的输出可以看出,当一个属性通过getattribute无法找到的时候会调用getattr

In [1]: class Test(object):
    ...:     def getattribute(self, item):
    ...:         print(&#39;call getattribute&#39;)
    ...:         return super(Test, self).getattribute(item)
    ...:     def getattr(self, item):
    ...:         return &#39;call getattr&#39;
    ...:
In [2]: Test().a
call getattribute
Out[2]: &#39;call getattr&#39;
登入後複製

应用

对于默认的字典,Python只支持以obj[&#39;foo&#39;]形式来访问,不支持obj.foo的形式,我们可以通过重写getattr让字典也支持obj[&#39;foo&#39;]的访问形式,这是一个非常经典常用的用法:

class Storage(dict):
    """
    A Storage object is like a dictionary except `obj.foo` can be used
    in addition to `obj[&#39;foo&#39;]`.
    """
    def getattr(self, key):
        try:
            return self[key]
        except KeyError as k:
            raise AttributeError(k)
    def setattr(self, key, value):
        self[key] = value
    def delattr(self, key):
        try:
            del self[key]
        except KeyError as k:
            raise AttributeError(k)
    def repr(self):
        return &#39;<Storage &#39; + dict.repr(self) + &#39;>&#39;
登入後複製

我们来使用一下我们自定义的加强版字典:

>>> s = Storage(a=1)
>>> s[&#39;a&#39;]
1
>>> s.a
1
>>> s.a = 2
>>> s[&#39;a&#39;]
2
>>> del s.a
>>> s.a
...
AttributeError: &#39;a&#39;
登入後複製

getitem

getitem用于通过下标[]的形式来获取对象中的元素,下面我们通过重写getitem来实现一个自己的list。

class MyList(object):
    def init(self, *args):
        self.numbers = args
    def getitem(self, item):
        return self.numbers[item]
my_list = MyList(1, 2, 3, 4, 6, 5, 3)
print my_list[2]
登入後複製

这个实现非常的简陋,不支持slice和step等功能,请读者自行改进,这里我就不重复了。

应用

下面是参考requests库中对于getitem的一个使用,我们定制了一个忽略属性大小写的字典类。

程序有些复杂,我稍微解释一下:由于这里比较简单,没有使用描述符的需求,所以使用了@property装饰器来代替,lower_keys的功能是将实例字典中的键全部转换成小写并且存储在字典self._lower_keys中。重写了getitem方法,以后我们访问某个属性首先会将键转换为小写的方式,然后并不会直接访问实例字典,而是会访问字典self._lower_keys去查找。赋值/删除操作的时候由于实例字典会进行变更,为了保持self._lower_keys和实例字典同步,首先清除self._lower_keys的内容,以后我们重新查找键的时候再调用getitem的时候会重新新建一个self._lower_keys

class CaseInsensitiveDict(dict):
    @property
    def lower_keys(self):
        if not hasattr(self, &#39;_lower_keys&#39;) or not self._lower_keys:
            self._lower_keys = dict((k.lower(), k) for k in self.keys())
        return self._lower_keys
    def _clear_lower_keys(self):
        if hasattr(self, &#39;_lower_keys&#39;):
            self._lower_keys.clear()
    def contains(self, key):
        return key.lower() in self.lower_keys
    def getitem(self, key):
        if key in self:
            return dict.getitem(self, self.lower_keys[key.lower()])
    def setitem(self, key, value):
        dict.setitem(self, key, value)
        self._clear_lower_keys()
    def delitem(self, key):
        dict.delitem(self, key)
        self._lower_keys.clear()
    def get(self, key, default=None):
        if key in self:
            return self[key]
        else:
            return default
登入後複製

我们来调用一下这个类:

>>> d = CaseInsensitiveDict()
>>> d[&#39;ziwenxie&#39;] = &#39;ziwenxie&#39;
>>> d[&#39;ZiWenXie&#39;] = &#39;ZiWenXie&#39;
>>> print(d)
{&#39;ZiWenXie&#39;: &#39;ziwenxie&#39;, &#39;ziwenxie&#39;: &#39;ziwenxie&#39;}
>>> print(d[&#39;ziwenxie&#39;])
ziwenxie
# d[&#39;ZiWenXie&#39;] => d[&#39;ziwenxie&#39;]
>>> print(d[&#39;ZiWenXie&#39;])
ziwenxi
登入後複製

以上是Python黑魔法之描述符的使用介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1424
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles