Python並發編程之線程池/進程池的詳細介紹
引言
Python標準函式庫為我們提供了threading和multiprocessing模組編寫對應的多執行緒/多進程程式碼,但是當專案達到一定的規模,頻繁創建/銷毀進程或執行緒是非常消耗資源的,這個時候我們就要編寫自己的執行緒池/進程池,以空間換時間。但從Python3.2開始,標準函式庫為我們提供了concurrent.futures模組,它提供了ThreadPoolExecutor和ProcessPoolExecutor兩個類,實現了對threading和multiprocessing的進一步抽象,對編寫線程池/進程池提供了直接的支援。
Executor和Future
concurrent.futures模組的基礎是Exectuor,Executor是一個抽象類別,它不能直接使用。但是它提供的兩個子類別ThreadPoolExecutor和ProcessPoolExecutor卻非常有用,顧名思義兩者分別被用來建立執行緒池和進程池的程式碼。我們可以將對應的tasks直接放入線程池/進程池,不需要維護Queue來操心死鎖的問題,線程池/進程池會自動幫我們調度。
Future這個概念相信有java和nodejs下程式經驗的朋友肯定不陌生了,你可以把它理解為一個在未來完成的操作,這是非同步程式設計的基礎,傳統程式模式下例如我們操作queue.get的時候,在等待返回結果之前會產生阻塞,cpu不能讓出來做其他事情,而Future的引入幫助我們在等待的這段時間可以完成其他的操作。關於在Python中進行非同步IO可以閱讀完本文之後參考我的Python並發程式設計協程/非同步IO。
p.s: 如果你還是在堅守Python2.x,請先安裝futures模組。
pip install futures
使用submit來操作線程池/進程池
我們先透過下面這段程式碼來了解線程池的概念
# example1.py from concurrent.futures import ThreadPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ThreadPoolExecutor(max_workers=2) # 创建一个最大可容纳2个task的线程池 future1 = pool.submit(return_future_result, ("hello")) # 往线程池里面加入一个task future2 = pool.submit(return_future_result, ("world")) # 往线程池里面加入一个task print(future1.done()) # 判断task1是否结束 time.sleep(3) print(future2.done()) # 判断task2是否结束 print(future1.result()) # 查看task1返回的结果 print(future2.result()) # 查看task2返回的结果
我們根據運行結果來分析一下。我們使用submit方法來在執行緒池中加入一個task,submit傳回一個Future物件,對於Future物件可以簡單地理解為一個在未來完成的操作。在第一個print語句中很明顯因為time.sleep(2)的原因我們的future1沒有完成,因為我們使用time.sleep(3)暫停了主線程,所以到第二個print語句的時候我們線程池裡的任務都已經全部結束。
ziwenxie :: ~ » python example1.py False True hello world # 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行 ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.py
上面的程式碼我們也可以改寫為進程池形式,api和執行緒池如出一轍,我就不囉嗦了。
# example2.py from concurrent.futures import ProcessPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ProcessPoolExecutor(max_workers=2) future1 = pool.submit(return_future_result, ("hello")) future2 = pool.submit(return_future_result, ("world")) print(future1.done()) time.sleep(3) print(future2.done()) print(future1.result()) print(future2.result())
下面是運行結果
ziwenxie :: ~ » python example2.py False True hello world ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py
使用map/wait來操作執行緒池/進程池
除了submit,Exectuor也為我們提供了map方法,和內建的map用法類似,下面我們透過兩個例子來比較兩者的差異。
使用submit操作回顧
# example3.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url, timeout): with urllib.request.urlopen(url, timeout=timeout) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: # Start the load operations and mark each future with its URL future_to_url = {executor.submit(load_url, url, 60): url for url in URLS} for future in concurrent.futures.as_completed(future_to_url): url = future_to_url[future] try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) else: print('%r page is %d bytes' % (url, len(data)))
從運行結果可以看出,as_completed不是按照URLS列表元素的順序傳回的。
ziwenxie :: ~ » python example3.py 'http://example.com/' page is 1270 byte 'https://api.github.com/' page is 2039 bytes 'http://httpbin.org' page is 12150 bytes
使用map
# example4.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url): with urllib.request.urlopen(url, timeout=60) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: for url, data in zip(URLS, executor.map(load_url, URLS)): print('%r page is %d bytes' % (url, len(data)))
從運行結果可以看出,map是按照URLS列表元素的順序返回的,並且寫出的程式碼更加簡潔直觀,我們可以根據具體的需求任選一種。
ziwenxie :: ~ » python example4.py 'http://httpbin.org' page is 12150 bytes 'http://example.com/' page is 1270 bytes 'https://api.github.com/' page is 2039 bytes
第三種選擇wait
wait方法接會回傳一個tuple(元組),tuple包含兩個set(集合),一個是completed(已完成的)另外一個是uncompleted(未完成的)。使用wait方法的一個優點就是獲得更大的自由度,它接收三個參數FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,預設為ALL_COMPLETED。
我們透過下面這個範例來看三個參數的差異
from concurrent.futures import ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_random_secs(num): sleep(randint(1, 5)) return "Return of {}".format(num) pool = ThreadPoolExecutor(5) futures = [] for x in range(5): futures.append(pool.submit(return_after_random_secs, x)) print(wait(futures)) # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
如果採用預設的ALL_COMPLETED,程式會阻塞直到執行緒池裡面的所有任務都完成。
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f0b06c9bc88 state=finished returned str>, <Future at 0x7f0b06cbaa90 state=finished returned str>, <Future at 0x7f0b06373898 state=finished returned str>, <Future at 0x7f0b06352ba8 state=finished returned str>, <Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
如果採用FIRST_COMPLETED參數,程式並不會等到執行緒池裡面所有的任務都完成。
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f84109edb00 state=finished returned str>, <Future at 0x7f840e2e9320 state=finished returned str>, <Future at 0x7f840f25ccc0 state=finished returned str>}, not_done={<Future at 0x7f840e2e9ba8 state=running>, <Future at 0x7f840e2e9940 state=running>})
以上是Python並發編程之線程池/進程池的詳細介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

PS“正在載入”問題是由資源訪問或處理問題引起的:硬盤讀取速度慢或有壞道:使用CrystalDiskInfo檢查硬盤健康狀況並更換有問題的硬盤。內存不足:升級內存以滿足PS對高分辨率圖片和復雜圖層處理的需求。顯卡驅動程序過時或損壞:更新驅動程序以優化PS和顯卡之間的通信。文件路徑過長或文件名有特殊字符:使用簡短的路徑和避免使用特殊字符。 PS自身問題:重新安裝或修復PS安裝程序。

解決 Photoshop 啟動慢的問題需要多管齊下,包括:升級硬件(內存、固態硬盤、CPU);卸載過時或不兼容的插件;定期清理系統垃圾和過多的後台程序;謹慎關閉無關緊要的程序;啟動時避免打開大量文件。

PS啟動時卡在“正在載入”可能是由於各種原因造成的:禁用損壞或衝突的插件。刪除或重命名損壞的配置文件。關閉不必要的程序或升級內存,避免內存不足。升級到固態硬盤,加快硬盤讀取速度。重裝PS修復損壞的系統文件或安裝包問題。查看錯誤日誌分析啟動過程中的錯誤信息。

PS打開文件時出現“正在載入”卡頓,原因可能包括:文件過大或損壞、內存不足、硬盤速度慢、顯卡驅動問題、PS版本或插件衝突。解決方法依次為:檢查文件大小和完整性、增加內存、升級硬盤、更新顯卡驅動、卸載或禁用可疑插件、重裝PS。通過逐步排查,並善用PS的性能設置,養成良好的文件管理習慣,可以有效解決該問題。

<p>可以通過 HTML 創建下一頁功能,步驟包括:創建容器元素、分割內容、添加導航鏈接、隱藏其他頁面、添加腳本。該功能允許用戶瀏覽分段的內容,每次只顯示一頁,適用於展示大量數據或內容。 </p>

PS載入慢的原因在於硬件(CPU、內存、硬盤、顯卡)和軟件(系統、後台程序)的綜合影響。解決方法包括:升級硬件(尤其是更換固態硬盤),優化軟件(清理系統垃圾、更新驅動、檢查PS設置),處理PS文件。定期維護電腦也有助於提升PS運行速度。

PS卡在“正在載入”?解決方法包括:檢查電腦配置(內存、硬盤、處理器)、清理硬盤碎片、更新顯卡驅動、調整PS設置、重新安裝PS,以及養成良好的編程習慣。

PS批量導出PDF的方法有三種:利用PS動作功能:錄製打開文件和導出PDF動作,循環執行動作即可。借助第三方軟件:使用文件管理軟件或自動化工具指定輸入輸出文件夾,設置文件名格式即可。使用腳本:編寫腳本定制批量導出邏輯,但需要編程知識。
