首頁 後端開發 Python教學 介紹Python的高效率的程式設計技巧

介紹Python的高效率的程式設計技巧

Apr 05, 2017 pm 01:36 PM

  我已經使用Python程式設計有多年了,即使今天我仍然驚訝於這種語言所能讓程式碼表現出的整潔和對DRY程式設計原則的適用。這些年來的經驗讓我學到了很多的小技巧和知識,大多數是透過閱讀很流行的開源軟體,如Django, Flask, Requests中獲得的。

  下面我挑選出的這幾個技巧常常會被人們忽略,但它們在日常編程中能真正的給我們帶來不少幫助。

#   1. 字典推導(Dictionary comprehensions)與集合推導(Set comprehensions)

  大多數的Python程式設計師都知道且使用過清單推導(list comprehensions)。如果你對list comprehensions概念不是很熟悉——一個list comprehension就是一個更簡短、簡潔的創建一個list的方法。

>>> some_list = [1, 2, 3, 4, 5]

>>> another_list = [ x + 1 for x in some_list ]

>>> another_list
[2, 3, 4, 5, 6]
登入後複製

  自從python 3.1 (甚至是Python 2.7)起,我們可以用同樣的語法來創建集合和字典表:

>>> # Set Comprehensions
>>> some_list = [1, 2, 3, 4, 5, 2, 5, 1, 4, 8]

>>> even_set = { x for x in some_list if x % 2 == 0 }

>>> even_set
set([8, 2, 4])

>>> # Dict Comprehensions

>>> d = { x: x % 2 == 0 for x in range(1, 11) }

>>> d
{1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False, 10: True}
登入後複製

  在第一個例子裡,我們以some_list為基礎,創建了一個具有不重複元素的集合,而且集合裡只包含偶數。而在字典表的例子裡,我們創建了一個key是不重複的1到10之間的整數,value是布林型,用來指示key是否是偶數。

  這裡另一個值得注意的事情是集合的字面量表示法。我們可以簡單的用這個方法建立一個集合:

>>> my_set = {1, 2, 1, 2, 3, 4}

>>> my_set
set([1, 2, 3, 4])
登入後複製

  而不需要使用內建函數set()。

  2. 計數時使用Counter計數物件。

  這聽起來顯而易見,但經常被人忘記。對大多數程式設計師來說,數一個東西是一項很常見的任務,而且在大多數情況下並不是很有挑戰性的事情——這裡有幾種方法能更簡單的完成這種任務。

  Python的collections類庫裡有個內建的dict類的子類,是專門來幹這種事情的:

>>> from collections import Counter
>>> c = Counter('hello world')

>>> c
Counter({'l': 3, 'o': 2, ' ': 1, 'e': 1, 'd': 1, 'h': 1, 'r': 1, 'w': 1})

>>> c.most_common(2)
[('l', 3), ('o', 2)]
登入後複製

  3. 漂亮的列印出JSON

#   JSON是一種非常好的資料序列化的形式,被現今的各種API和web service大量的使用。使用python內建的json處理,可以使JSON串具有一定的可讀性,但當遇到大型數據時,它表現成一個很長的、連續的一行時,人的肉眼就很難觀看了。

  為了能讓JSON資料表現的更友好,我們可以使用indent參數來輸出漂亮的JSON。當在控制台互動式程式設計或做日誌時,這尤其有用:

>>> import json

>>> print(json.dumps(data))  # No indention
{"status": "OK", "count": 2, "results": [{"age": 27, "name": "Oz", "lactose_intolerant": true}, {"age": 29, "name": "Joe", "lactose_intolerant": false}]}

>>> print(json.dumps(data, indent=2))  # With indention

{
  "status": "OK",
  "count": 2,
  "results": [

    {
      "age": 27,
      "name": "Oz",

      "lactose_intolerant": true
    },
    {
      "age": 29,

      "name": "Joe",
      "lactose_intolerant": false
    }
  ]

}
登入後複製

  同樣,使用內建的pprint模組,也可以讓它任何東西列印輸出的更漂亮。

  4. 創造一次性的、快速的小型web服務

  有時候,我們需要在兩台機器或服務之間做一些簡單的、很基礎的RPC之類的互動。我們希望用一種簡單的方式使用B程式呼叫A程式裡的一個方法—有時是在另一台機器上。僅內部使用。

  我並不鼓勵將這裡介紹的方法用在非內部的、一次性的程式設計中。我們可以使用一種叫做XML-RPC的協定 (相對應的是這個Python函式庫),來做這種事。

  下面是一個使用SimpleXMLRPCServer模組建立一個快速的小的檔案讀取伺服器的例子:

from SimpleXMLRPCServer import SimpleXMLRPCServer

def file_reader(file_name):

    with open(file_name, 'r') as f:
        return f.read()

server = SimpleXMLRPCServer(('localhost', 8000))
server.register_introspection_functions()

server.register_function(file_reader)

server.serve_forever()
登入後複製

  客戶端:

import xmlrpclib
proxy = xmlrpclib.ServerProxy('http://localhost:8000/')

proxy.file_reader('/tmp/secret.txt')
登入後複製

  我們這樣就得到了一個遠端文件讀取工具,沒有外部的依賴,只有幾句代碼(當然,沒有任何安全措施,所以只可以在家裡這樣做)。

  5. Python神奇的開源社群

  這裡我提到的幾個東西都是Python標準庫裡的,如果你安裝了Python,你就已經可以這樣使用了。而對於許多其它類型的任務,這裡有大量的社區維護的第三方庫可供你使用。

  下面這個清單是我認為的好用且健壯的開源庫的必備條件:

  好的開源函式庫必須…
  • # 包含一個很清楚的許可聲明,能適用於你的使用情境。


  • # 開發和維護工作很活躍(或,你能參與開發維護它。)


  • 能夠簡單的使用pip安裝或重複部署。


  • # 有測試套件,具有足夠的測試覆蓋率。

  如果你發現一個好的程式庫,符合你的要求,不要不好意思————大部分的開源專案都歡迎捐贈程式碼和歡迎提供幫助——即使你不是一個Python高手。

  原文連結:Improving Your Python Productivity

以上是介紹Python的高效率的程式設計技巧的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles