python識別驗證碼的程式碼詳解
這篇文章主要介紹了python中識別驗證碼的相關資料,這屬於學習python的基本入門教程,文中介紹的非常詳細,文末也給出了完整的示例代碼,需要的朋友們可以參考學習,下面來一起看看吧。
前言
驗證碼?我也能破解?
關於驗證碼的介紹就不多說了,各種各樣的驗證碼在人們生活中時不時就會冒出來,身為學生日常接觸最多的就是教務處系統的驗證碼了,例如如下的驗證碼:
#識別辦法
模擬登陸有著複雜的步驟,在這裡咱們不管其他操作,只負責根據輸入的一張驗證碼圖片返回一個答案字串。
我們知道驗證碼為了製作幹擾,會把圖片弄成五顏六色的樣子,而我們首先就是要去除這些幹擾,這一步就需要不斷試驗了,增強圖片色彩,加大對比度等等都可以產生幫助。
在經過各種對圖片的操作之後,終於找到了比較完美的去除乾擾方案。可以看到在去除乾擾之後,最優情況下,我們將得到一張十分純淨的黑白字元圖片。一張圖片上有四個字符,沒辦法一下子就把四個字符全部識別,需要把圖片進行裁剪,裁剪成每張小圖只有一個字符的樣子,再對每張圖片分別進行識別。
#接下來就是辨識文字了,我們首先把得到的小圖轉換成01表示的矩陣,每個矩陣代表一個字元。
例如數字六的矩陣
num_6=[ 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,0,0,0,0,0,0, 0,0,0,0,1,1,1,0,0,0,0,0,0, 0,0,0,1,1,1,0,0,0,0,0,0,0, 0,0,0,1,1,0,0,0,0,0,0,0,0, 0,0,1,1,0,0,0,0,0,0,0,0,0, 0,0,1,1,0,0,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,0,0,0,0, 0,1,1,0,0,0,0,1,1,1,0,0,0, 0,1,1,0,0,0,0,0,1,1,0,0,0, 0,1,1,0,0,0,0,0,1,1,0,0,0, 0,1,1,1,0,0,0,1,1,1,0,0,0, 0,0,1,1,1,1,1,1,1,0,0,0,0, 0,0,0,1,1,1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, ]
遠遠望過去,瞇著眼睛還是能分辨出來的。
因為驗證碼十分規整,每個數字所在的位置都是固定的,所以並不需要涉及什麼機器學習的演算法,只是簡單的進行一下矩陣的比對就可以了,在所有的實現做好的矩陣中找到相似度最高的矩陣就可以了,在這裡的比對方法多種多樣,反正數據簡單能正確識別出來就好。
至此,咱們的驗證碼辨識工作就結束了。
這次進行的驗證碼識別主要採用python的PIL進行圖片操作,模擬登陸自動填入驗證碼的全部程式碼請看這裡:
##範例程式碼
# -*- coding: utf-8 -* import sys reload(sys) sys.setdefaultencoding( "utf-8" ) import re import requests import io import os import json from PIL import Image from PIL import ImageEnhance from bs4 import BeautifulSoup import mdata class Student: def init(self, user,password): self.user = str(user) self.password = str(password) self.s = requests.Session() def login(self): url = "http://202.118.31.197/ACTIONLOGON.APPPROCESS?mode=4" res = self.s.get(url).text imageUrl = 'http://202.118.31.197/'+re.findall('<img src="(.+?)" width="55"',res)[0] im = Image.open(io.BytesIO(self.s.get(imageUrl).content)) enhancer = ImageEnhance.Contrast(im) im = enhancer.enhance(7) x,y = im.size for i in range(y): for j in range(x): if (im.getpixel((j,i))!=(0,0,0)): im.putpixel((j,i),(255,255,255)) num = [6,19,32,45] verifyCode = "" for i in range(4): a = im.crop((num[i],0,num[i]+13,20)) l=[] x,y = a.size for i in range(y): for j in range(x): if (a.getpixel((j,i))==(0,0,0)): l.append(1) else: l.append(0) his=0 chrr=""; for i in mdata.data: r=0; for j in range(260): if(l[j]==mdata.data[i][j]): r+=1 if(r>his): his=r chrr=i verifyCode+=chrr # print "辅助输入验证码完毕:",verifyCode data= { 'WebUserNO':str(self.user), 'Password':str(self.password), 'Agnomen':verifyCode, } url = "http://202.118.31.197/ACTIONLOGON.APPPROCESS?mode=4" t = self.s.post(url,data=data).text if re.findall("images/Logout2",t)==[]: l = '[0,"'+re.findall('alert((.+?));',t)[1][1][2:-2]+'"]'+" "+self.user+" "+self.password+"\n" # print l # return '[0,"'+re.findall('alert((.+?));',t)[1][1][2:-2]+'"]' return [False,l] else: l = '登录成功 '+re.findall('! (.+?) ',t)[0]+" "+self.user+" "+self.password+"\n" # print l return [True,l] def getInfo(self): imageUrl = 'http://202.118.31.197/ACTIONDSPUSERPHOTO.APPPROCESS' data = self.s.get('http://202.118.31.197/ACTIONQUERYBASESTUDENTINFO.APPPROCESS?mode=3').text #学籍信息 data = BeautifulSoup(data,"lxml") q = data.find_all("table",attrs={'align':"left"}) a = [] for i in q[0]: if type(i)==type(q[0]) : for j in i : if type(j) ==type(i): a.append(j.text) for i in q[1]: if type(i)==type(q[1]) : for j in i : if type(j) ==type(i): a.append(j.text) data = {} for i in range(1,len(a),2): data[a[i-1]]=a[i] # data['照片'] = io.BytesIO(self.s.get(imageUrl).content) return json.dumps(data) def getPic(self): imageUrl = 'http://202.118.31.197/ACTIONDSPUSERPHOTO.APPPROCESS' pic = Image.open(io.BytesIO(self.s.get(imageUrl).content)) return pic def getScore(self): score = self.s.get('http://202.118.31.197/ACTIONQUERYSTUDENTSCORE.APPPROCESS').text #成绩单 score = BeautifulSoup(score, "lxml") q = score.find_all(attrs={'height':"36"})[0] point = q.text print point[point.find('平均学分绩点'):] table = score.html.body.table people = table.find_all(attrs={'height' : '36'})[0].string r = table.find_all('table',attrs={'align' : 'left'})[0].find_all('tr') subject = [] lesson = [] for i in r[0]: if type(r[0])==type(i): subject.append(i.string) for i in r: k=0 temp = {} for j in i: if type(r[0])==type(j): temp[subject[k]] = j.string k+=1 lesson.append(temp) lesson.pop() lesson.pop(0) return json.dumps(lesson) def logoff(self): return self.s.get('http://202.118.31.197/ACTIONLOGOUT.APPPROCESS').text if name == "main": a = Student(20150000,20150000) r = a.login() print r[1] if r[0]: r = json.loads(a.getScore()) for i in r: for j in i: print i[j], print q = json.loads(a.getInfo()) for i in q: print i,q[i] a.getPic().show() a.logoff()
以上是python識別驗證碼的程式碼詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。

啟動 Redis 服務器的步驟包括:根據操作系統安裝 Redis。通過 redis-server(Linux/macOS)或 redis-server.exe(Windows)啟動 Redis 服務。使用 redis-cli ping(Linux/macOS)或 redis-cli.exe ping(Windows)命令檢查服務狀態。使用 Redis 客戶端,如 redis-cli、Python 或 Node.js,訪問服務器。

要從 Redis 讀取隊列,需要獲取隊列名稱、使用 LPOP 命令讀取元素,並處理空隊列。具體步驟如下:獲取隊列名稱:以 "queue:" 前綴命名,如 "queue:my-queue"。使用 LPOP 命令:從隊列頭部彈出元素並返回其值,如 LPOP queue:my-queue。處理空隊列:如果隊列為空,LPOP 返回 nil,可先檢查隊列是否存在再讀取元素。
