首頁 後端開發 Python教學 利用python中的繪圖庫繪圖的方法介紹

利用python中的繪圖庫繪圖的方法介紹

May 12, 2017 am 10:49 AM
matplotlib numpy python 繪圖

matplotlib是Python最著名的繪圖庫,本文給大家分享了利用matplotlib+numpy繪製多種繪圖的方法實例,其中包括填充圖、散點圖(scatter plots)、. 長條圖(bar plots) 、等高線圖(contour plots)、 點陣圖和3D圖,需要的朋友可以參考借鑒,下面來一起看看吧。

前言

matplotlib 是Python最著名的繪圖庫,它提供了一整套和matlab相似的指令API,十分適合互動式地進行製圖。本文將以例子的形式分析matplot中所支持的,分析中常用的幾種圖。其中包括填充圖、散佈圖(scatter plots)、. 長條圖(bar plots)、等高線圖(contour plots)、 點陣圖和3D圖,下面來一起看看詳細的介紹:

一、填入圖

參考程式碼


from matplotlib.pyplot import *
x=linspace(-3,3,100)
y1=np.sin(x)
y2=np.cos(x)
fill_between(x,y1,y2,where=(y1>=y2),color='red',alpha=0.25)
fill_between(x,y1,y2,where=(y<>y2),color=&#39;green&#39;,alpha=0.25)
plot(x,y1)
plot(x,y2)
show()
登入後複製

簡要分析

這裡主要是用到了fill_between函數。這個函數很好理解,就是傳入x軸的數組和需要填充的兩個y軸數組;然後傳入填充的範圍,用where=來確定填充的區域;最後可以加上填滿顏色啦,透明度之類修飾的參數。

當然fill_between函數還有更進階的用法,詳見fill_between用法或help文件。

效果圖

#二、散佈圖(scatter plots)

參考程式碼


from matplotlib.pyplot import *
n = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
T = np.arctan2(Y,X)
scatter(X,Y, s=75, c=T, alpha=.5)
xlim(-1.5,1.5)
ylim(-1.5,1.5)
show()
登入後複製

簡單分析

先介紹一下numpy 的normal函數,很明顯,這是產生常態分佈的函數。這個函數接受三個參數,分別表示常態分佈的平均值,標準差,還有就是產生數組的長度。很好記。

然後是arctan2函數,這個函數接受兩個參數,分別表示y數組和x數組,然後傳回對應的arctan(y/x)的值,結果是弧度製。

接下來用到了繪製散佈圖的scatter方法,首先當然是傳入x和y數組,接著s參數表示scale,即散點的大小;c參數表示color ,我給他傳的是根據角度劃分的一個數組,對應的就是每一個點的顏色(雖然不知道是怎麼對應的,不過好像是一個根據數組內其他元素進行的相對的轉換,這裡不重要了,反正相同的顏色賦一樣的值就好了);最後是alpha參數,表示點的透明度。

至於scatter函數的高階用法可以參見官方文件scatter函式或help文件。

最後設定下座標範圍就好了。

效果圖

#三、長條圖(bar plots)

參考程式碼


from matplotlib.pyplot import *
n = 12
X = np.arange(n)
Y1 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)
Y2 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)
bar(X, +Y1, facecolor=&#39;#9999ff&#39;, edgecolor=&#39;white&#39;)
bar(X, -Y2, facecolor=&#39;#ff9999&#39;, edgecolor=&#39;white&#39;)
for x,y in zip(X,Y1):
 text(x+0.4, y+0.05, &#39;%.2f&#39; % y, ha=&#39;center&#39;, va= &#39;bottom&#39;)
for x,y in zip(X,Y2):
 text(x+0.4, -y-0.05, &#39;%.2f&#39; % y, ha=&#39;center&#39;, va= &#39;top&#39;)
xlim(-.5,n)
xticks([])
ylim(-1.25,+1.25)
yticks([])
show()
登入後複製

簡單分析

注意要手動導入pylab包,否則會找不到bar。 。 。

先用numpy的arange函數產生一個[0,1,2,…,n]的陣列。 (用linspace也可以)

其次用numpy的uniform函數產生一個均勻分佈的數組,傳入三個參數分別表示下界、上界和陣列長度。並用這個數組產生需要顯示的資料。

然後就是bar函數的使用了,基本用法也和之前的plot、scatter類似,傳入橫縱座標和一些修飾性參數。

接著我們需要用for循環來為長條圖顯示數字:用python的zip函數將X和Y1兩兩配對並循環遍歷,得到每一個資料的位置,然後用text函數在該位置上顯示一個字串(注意位置上的細節調整)。 text傳入橫縱座標,要顯示的字串,ha參數制定橫向對齊,va參數制定縱向對齊。

最後調整下座標範圍,並取消橫縱座標上的刻度以保持美觀即可。

至於bar函數的具體用法可以參考bar函數用法或help文件。

效果圖

#四、等高線圖(contour plots)

參考程式碼


from matplotlib.pyplot import *
def f(x,y):
 return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)
n = 256
x = np.linspace(-3,3,n)
y = np.linspace(-3,3,n)
X,Y = np.meshgrid(x,y)
contourf(X, Y, f(X,Y), 8, alpha=.75, cmap=cm.hot)
C = contour(X, Y, f(X,Y), 8, colors=&#39;black&#39;, linewidth=.5)
clabel(C, inline=1, fontsize=10)
show()
登入後複製

简要分析

首先要明确等高线图是一个三维立体图,所以我们要建立一个二元函数f,值由两个参数控制,(注意,这两个参数都应该是矩阵)。

然后我们需要用numpy的meshgrid函数生成一个三维网格,即,x轴由第一个参数指定,y轴由第二个参数指定。并返回两个增维后的矩阵,今后就用这两个矩阵来生成图像。

接着就用到coutourf函数了,所谓contourf,大概就是contour fill的意思吧,只填充,不描边;这个函数主要是接受三个参数,分别是之前生成的x、y矩阵和函数值;接着是一个整数,大概就是表示等高线的密度了,有默认值;然后就是透明度和配色问题了,cmap的配色方案这里不多研究。

随后就是contour函数了,很明显,这个函数是用来描线的。用法可以类似的推出来,不解释了,需要注意的是他返回一个对象,这个对象一般要保留下来个供后续的加工细化。

最后就是用clabel函数来在等高线图上表示高度了,传入之前的那个contour对象;然后是inline属性,这个表示是否清除数字下面的那条线,为了美观当然是清除了,而且默认的也是1;再就是指定线的宽度了,不解释,。

效果图

五、点阵图

参考代码


from matplotlib.pyplot import *
def f(x,y):
 return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)
n = 10
x = np.linspace(-3,3,3.5*n)
y = np.linspace(-3,3,3.0*n)
X,Y = np.meshgrid(x,y)
Z = f(X,Y)
imshow(Z,interpolation=&#39;nearest&#39;, cmap=&#39;bone&#39;, origin=&#39;lower&#39;)
colorbar(shrink=.92)
show()
登入後複製

简要分析

这段代码的目的就是将一个矩阵直接转换为一张像照片一样的图,完整的进行显示。

前面的代码就是生成一个矩阵Z,不作解释。

接着用到了imshow函数,传人Z就可以显示出一个二维的图像了,图像的颜色是根据元素的值进行的自适应调整,后面接了一些修饰性的参数,比如配色方案(cmap),零点位置(origin)。

最后用colorbar显示一个色条,可以不传参数,这里传进去shrink参数用来调节他的长度。

效果图

六、3D图

参考代码


import numpy as np
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
fig = figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
ax.contourf(X, Y, Z, zdir=&#39;z&#39;, offset=-2, cmap=plt.cm.hot)
ax.set_zlim(-2,2)
show()
登入後複製

简要分析

有点麻烦,需要用到的时候再说吧,不过原理也很简单,跟等高线图类似,先画图再描线,最后设置高度,都是一回事。

效果图

总结

【相关推荐】

1. Python免费视频教程

2. Python基础入门教程

3. Python在数据科学中的应用

以上是利用python中的繪圖庫繪圖的方法介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

See all articles