首頁 後端開發 Python教學 Python中關於yield的使用方法介紹

Python中關於yield的使用方法介紹

May 21, 2017 pm 01:55 PM

本篇文章主要介绍了Python yield 使用方法浅析,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数

清单 1. 简单输出斐波那契數列前 N 个数

 def fab(max): 
  n, a, b = 0, 0, 1 
  while n < max: 
    print b 
    a, b = b, a + b 
    n = n + 1
登入後複製

执行 fab(5),我们可以得到如下输出:

 >>> fab(5)
 1
 1
 2
 3
 5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

 def fab(max): 
  n, a, b = 0, 0, 1 
  L = [] 
  while n < max: 
    L.append(b) 
    a, b = b, a + b 
    n = n + 1 
  return L
登入後複製

可以使用如下方式打印出 fab 函数返回的 List:

>>> 
for
 n in fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5
登入後複製

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

 for i in <a href="http://www.php.cn/wiki/1078.html" target="_blank">range</a>(1000): pass会导致生成一个 1000 个元素的 List,而代码:

 for i in xrange(1000): pass则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

class Fab(object): 

  def init(self, max): 
    self.max = max 
    self.n, self.a, self.b = 0, 0, 1 

  def iter(self): 
    return self 

  def next(self): 
    if self.n < self.max: 
      r = self.b 
      self.a, self.b = self.b, self.a + self.b 
      self.n = self.n + 1 
      return r 
    raise StopIteration()
登入後複製

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5
登入後複製
登入後複製

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

 def fab(max): 
  n, a, b = 0, 0, 1 
  while n < max: 
    yield b 
    # print b 
    a, b = b, a + b 
    n = n + 1 

&#39;&#39;&#39;
登入後複製

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in Fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5
登入後複製
登入後複製

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

 >>> f = fab(5) 
 >>> f.next() 
 1 
 >>> f.next() 
 1 
 >>> f.next() 
 2 
 >>> f.next() 
 3 
 >>> f.next() 
 5 
 >>> f.next() 
 Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
 StopIteration
登入後複製

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

 >>> from inspect import isgeneratorfunction 
 >>> isgeneratorfunction(fab) 
 True
登入後複製

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

 >>> import types 
 >>> isinstance(fab, types.GeneratorType) 
 False 
 >>> isinstance(fab(5), types.GeneratorType) 
 True
fab 是无法迭代的,而 fab(5) 是可迭代的:
 >>> from collections import Iterable 
 >>> isinstance(fab, Iterable) 
 False 
 >>> isinstance(fab(5), Iterable) 
 True
登入後複製

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

>>> f1 = fab(3) 
 >>> f2 = fab(5) 
 >>> print &#39;f1:&#39;, f1.next() 
 f1: 1 
 >>> print &#39;f2:&#39;, f2.next() 
 f2: 1 
 >>> print &#39;f1:&#39;, f1.next() 
 f1: 1 
 >>> print &#39;f2:&#39;, f2.next() 
 f2: 1 
 >>> print &#39;f1:&#39;, f1.next() 
 f1: 2 
 >>> print &#39;f2:&#39;, f2.next() 
 f2: 2 
 >>> print &#39;f2:&#39;, f2.next() 
 f2: 3 
 >>> print &#39;f2:&#39;, f2.next() 
 f2: 5
登入後複製

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

 def read_file(fpath): 
  BLOCK_SIZE = 1024 
  with open(fpath, &#39;rb&#39;) as f: 
    while True: 
      block = f.read(BLOCK_SIZE) 
      if block: 
        yield block 
      else: 
        return
登入後複製

以上是Python中關於yield的使用方法介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

See all articles