目錄
2 腳本簡單描述" >2 腳本簡單描述
2.1 _get_db" >2.1 _get_db
" >2.2 create_tab
" >2.3 rowrecord
2.4 binlogdesc" >2.4 binlogdesc
2.5 closeconn" >2.5 closeconn
3 使用说明" >3 使用说明
4 python脚本" >4 python脚本
首頁 資料庫 mysql教程 基於binlog來分析mysql的行記錄修改情況

基於binlog來分析mysql的行記錄修改情況

May 15, 2018 am 11:17 AM
mysql

 最近寫完mysql flashback,突然發現還有有這種使用場景:有些情況下,可能會統計在某個時間段內,MySQL修改了多少數據量?發生了多少事務?主要是哪些表格發生變動?變動的數量是怎麼樣的? 但是卻不需要行記錄的修改內容,只需要了解 行資料的 變動情況。故也整理了一下。

昨晚寫的腳本,因為個人python能力有限,本來想這不發這文,後來想想,沒準會有哪位園友給出優化建議。

1 實作內容 

    有些情況下,可能會統計在某個時間段內,MySQL修改了多少資料量?發生了多少事務?主要是哪些表格有變動?變動的數量是怎麼樣的? 但是卻不需要行記錄的修改內容,只需要了解 行資料的 變動情況。

    這些情況部分可以透過監控來大致了解,但也可以基於binlog來全碟分析,binlog的格式是row模式。

    在寫flashback的時候,順帶把這個也寫了個腳步,使用python編寫,都差不多原理,只是這個簡單些,介於個人python弱的不行,性能可能還有很大的提升空間,也希望園友能協助優化下。

    先貼python腳步的分析結果圖如下,分為4個部分:事務耗時情況、事務影響行數情況、DML行數情況以及操作最頻繁表格情況。

2 腳本簡單描述

    腳本依賴的模組中,pymysql需要自行安裝

    建立類別queryanalyse,其中有5個函數定義:_get_db、create_tab、rowrecord、binlogdesc跟closeconn。

2.1 _get_db

#    此函數用來解析輸入參數值,參數值總共有7個,都是必須填入的。分別為host,user,password,port,table name for transaction,table name for records,對應的簡稱如下:


ALL options need to assign:

-h    : host, the database host,which database will store the results after analysis

-u#    : user, the db user

##-p    : password, the db user's password

-P    : port, the db port

-f    :

file path, the binlog file

-tr    : table name for record , the table name to store the row record

-tt    : table name for transaction, the table name to store transactions

   ,執行腳本:python 例如,執行腳本:python 例如,執行腳本:python 例如,執行腳本:python 例如,執行腳本:python 例如,執行腳本:python 例如,執行腳本:python 例如queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow,該函數負責處理各個選項的參數值情況,並儲存。

2.2 create_tab

#    建立兩個表格,分別用來儲存 binlog file檔案的分析結果。一個用來儲存交易的執行開始時間跟結束時間,由選項 -tt來賦值表名;一個是用來儲存每一行記錄的修改情況,由選項 -tr來賦值表名。

    事務表記錄內容:交易的開始時間及交易的結束時間。

    行記錄表的內容:庫名,表名,DML類型以及事務對應事務表的編號。

root@localhost:mysql3310.sock  14:42:29 [flashback]>show create table tbrow \G*************************** 1. row ***************************
       Table: tbrowCreate Table: CREATE TABLE `tbrow` (
  `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete',
  `tran_num` int(11) NOT NULL COMMENT 'the transaction number',
  `dbname` varchar(50) NOT NULL,
  `tbname` varchar(50) NOT NULL,  PRIMARY KEY (`auto_id`),  KEY `sqltype` (`sqltype`),  KEY `dbname` (`dbname`),  KEY `tbname` (`tbname`)
) ENGINE=InnoDB AUTO_INCREMENT=295151 DEFAULT CHARSET=utf81 row in set (0.00 sec)
 
root@localhost:mysql3310.sock  14:42:31 [flashback]>SHOW CREATE TABLE TBTRAN \G*************************** 1. row ***************************
       Table: TBTRANCreate Table: CREATE TABLE `tbtran` (
  `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `begin_time` datetime NOT NULL,
  `end_time` datetime NOT NULL,  PRIMARY KEY (`auto_id`)
) ENGINE=InnoDB AUTO_INCREMENT=6390 DEFAULT CHARSET=utf81 row in set (0.00 sec)
登入後複製

2.3 rowrecord

#    重點函數,分析binlog檔案內容。這裡有幾個規律:

  1. 每个事务的结束点,是以 'Xid = ' 来查找

    1. 事务的开始时间,是事务内的第一个 'Table_map' 行里边的时间

    2. 事务的结束时间,是以 'Xid = '所在行的 里边的时间

  2. 每个行数据是属于哪个表格,是以 'Table_map'来查找

  3. DML的类型是按照 行记录开头的情况是否为:'### INSERT INTO'  、'### UPDATE' 、'### DELETE FROM' 

  4. 注意,单个事务可以包含多个表格多种DML多行数据修改的情况。

2.4 binlogdesc

    描述分析结果,简单4个SQL分析。

  1. 分析修改行数据的 事务耗时情况

  2. 分析修改行数据的 事务影响行数情况

  3. 分析DML分布情况

  4. 分析 最多DML操作的表格 ,取前十个分析

2.5 closeconn

    关闭数据库连接。

3 使用说明

    首先,确保python安装了pymysql模块,把python脚本拷贝到文件 queryanalyse.py。

    然后,把要分析的binlog文件先用 mysqlbinlog 指令分析存储,具体binlog的文件说明,可以查看之前的博文:关于binary log那些事——认真码了好长一篇。mysqlbinlog的指令使用方法,可以详细查看文档:https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html 。

    比较常用通过指定开始时间跟结束时间来分析 binlog文件。


mysqlbinlog --start-datetime='2017-04-23 00:00:03' --stop-datetime='2017-04-23 00:30:00' --base64-output=decode-rows -v /data/mysql/logs/mysql-bin.007335 > /tmp/binlog_test.log   

    分析后,可以把这个 binlog_test.log文件拷贝到其他空闲服务器执行分析,只需要有个空闲的DB来存储分析记录即可。

    假设这个时候,拷贝 binlog_test.log到测试服务器上,测试服务器上的数据库可以用来存储分析内容,则可以执行python脚本了,注意要进入到python脚本的目录中,或者指定python脚本路径。


python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f= /tmp/binlog_test.log -tt=flashback.tbtran -tr=flashback.tbrow

    没了,就等待输出吧。

    性能是硬伤,在虚拟机上测试,大概500M的binlog文件需要分析2-3min,有待提高!

4 python脚本

  1 import pymysql  2 from pymysql.cursors import DictCursor  3 import re  4 import os  5 import sys  6 import datetime  7 import time  8 import logging  9 import importlib 10 importlib.reload(logging) 11 logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ') 12  13  14 usage=''' usage: python [script's path] [option] 15 ALL options need to assign: 16  17 -h     : host, the database host,which database will store the results after analysis 
 18 -u     : user, the db user 19 -p     : password, the db user's password 20 -P     : port, the db port 21 -f     : file path, the binlog file 22 -tr    : table name for record , the table name to store the row record 23 -tt    : table name for transaction, the table name to store transactions 24 Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow 25  26 ''' 27  28 class queryanalyse: 29     def init(self): 30         #初始化 31         self.host='' 32         self.user='' 33         self.password='' 34         self.port='3306' 35         self.fpath='' 36         self.tbrow='' 37         self.tbtran='' 38  39         self._get_db() 40         logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran)) 41  42         self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8') 43         self.cur = self.mysqlconn.cursor(cursor=DictCursor) 44         logging.info('MySQL which userd to store binlog event connection is ok') 45  46         self.begin_time='' 47         self.end_time='' 48         self.db_name='' 49         self.tb_name='' 50  51     def _get_db(self): 52         #解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式, 53         #由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理 54         logging.info('begin to assign values to parameters') 55         if len(sys.argv) == 1: 56             print(usage) 57             sys.exit(1) 58         elif sys.argv[1] == '--help': 59             print(usage) 60             sys.exit() 61         elif len(sys.argv) > 2: 62             for i in sys.argv[1:]: 63                 _argv = i.split('=') 64                 if _argv[0] == '-h': 65                     self.host = _argv[1] 66                 elif _argv[0] == '-u': 67                     self.user = _argv[1] 68                 elif _argv[0] == '-P': 69                     self.port = int(_argv[1]) 70                 elif _argv[0] == '-f': 71                     self.fpath = _argv[1] 72                 elif _argv[0] == '-tr': 73                     self.tbrow = _argv[1] 74                 elif _argv[0] == '-tt': 75                     self.tbtran = _argv[1] 76                 elif _argv[0] == '-p': 77                     self.password = _argv[1] 78                 else: 79                     print(usage) 80  81     def create_tab(self): 82         #创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况 83         #注意,一个事务可以存储多行数据修改的情况 84         logging.info('creating table ...') 85         create_tb_sql ='''CREATE TABLE IF NOT EXISTS  {} ( 86                           `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 87                           `begin_time` datetime NOT NULL, 88                           `end_time` datetime NOT NULL, 89                           PRIMARY KEY (`auto_id`) 90                         ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 91                         CREATE TABLE IF NOT EXISTS  {} ( 92                           `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 93                           `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete', 94                           `tran_num` int(11) NOT NULL COMMENT 'the transaction number', 95                           `dbname` varchar(50) NOT NULL, 96                           `tbname` varchar(50) NOT NULL, 97                           PRIMARY KEY (`auto_id`), 98                           KEY `sqltype` (`sqltype`), 99                           KEY `dbname` (`dbname`),100                           KEY `tbname` (`tbname`)101                         ) ENGINE=InnoDB DEFAULT CHARSET=utf8;102                         truncate table {};103                         truncate table {};104                         '''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)105 106         self.cur.execute(create_tb_sql)107         logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))108 109     def rowrecord(self):110         #处理每一行binlog111         #事务的结束采用 'Xid =' 来划分112         #分析结果,按照一个事务为单位存储提交一次到db113         try:114             tran_num=1    #事务数115             record_sql='' #行记录的insert sql116             tran_sql=''   #事务的insert sql117 118             self.create_tab()119 120             with open(self.fpath,'r') as binlog_file:121                 logging.info('begining to analyze the binlog file ,this may be take a long time !!!')122                 logging.info('analyzing...')123 124                 for bline in binlog_file:125 126                     if bline.find('Table_map:') != -1:127                         l = bline.index('server')128                         n = bline.index('Table_map')129                         begin_time = bline[:l:].rstrip(' ').replace('#', '20')130 131                         if record_sql=='':132                             self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]133 134                         self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]135                         self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]136                         bline=''137 138                     elif bline.startswith('### INSERT INTO'):139                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)140 141                     elif bline.startswith('### UPDATE'):142                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)143 144                     elif bline.startswith('### DELETE FROM'):145                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)146 147                     elif bline.find('Xid =') != -1:148 149                         l = bline.index('server')150                         end_time = bline[:l:].rstrip(' ').replace('#', '20')151                         self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]152                         tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)153 154                         self.cur.execute(tran_sql)155                         self.mysqlconn.commit()156                         record_sql = ''157                         tran_num += 1158 159         except Exception:160             return 'funtion rowrecord error'161 162     def binlogdesc(self):163         sql=''164         t_num=0165         r_num=0166         logging.info('Analysed result printing...\n')167         #分析总的事务数跟行修改数量168         sql="select 'tbtran' name,count(*) nums from {}  union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)169         self.cur.execute(sql)170         rows=self.cur.fetchall()171         for row in rows:172             if row['name']=='tbtran':173                 t_num = row['nums']174             else:175                 r_num = row['nums']176         print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))177 178         # 计算 最耗时 的单个事务179         # 分析每个事务的耗时情况,分为5个时间段来描述180         # 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second181         sql='''select 
182                       count(case when cost_sec between 0 and 1 then 1 end ) cos_1,183                       count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,184                       count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,185                       count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,186                       count(case when cost_sec >30.1 then 1 end ) cos_more,187                       max(cost_sec) cos_max188                 from 
189                 (190                         select 
191                             auto_id,timestampdiff(second,begin_time,end_time) cost_sec192                         from {}193                 ) a;'''.format(self.tbtran)194         self.cur.execute(sql)195         rows=self.cur.fetchall()196 197         for row in rows:198             print('The most cost time : {} '.format(row['cos_max']))199             print('The distribution map of each transaction costed time: ')200             print('Cost time between    0 and  1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))201             print('Cost time between  1.1 and  5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))202             print('Cost time between  5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))203             print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))204             print('Cost time                     > 30.1 : {} , {}%\n'.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))205 206         # 计算 单个事务影响行数最多 的行数量207         # 分析每个事务 影响行数 情况,分为5个梯度来描述208         sql='''select 
209                     count(case when nums between 0 and 10 then 1 end ) row_1,210                     count(case when nums between 11 and 100 then 1 end ) row_2,211                     count(case when nums between 101 and 1000 then 1 end ) row_3,212                     count(case when nums between 1001 and 10000 then 1 end ) row_4,213                     count(case when nums >10001 then 1 end ) row_5,214                     max(nums) row_max215                from 
216                   (217                     select 
218                              count(*) nums219                     from {} group by tran_num220                    ) a;'''.format(self.tbrow)221         self.cur.execute(sql)222         rows=self.cur.fetchall()223 224         for row in rows:225             print('The most changed rows for each row: {} '.format(row['row_max']))226             print('The distribution map of each transaction changed rows : ')227             print('Changed rows between    1 and    10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))228             print('Changed rows between   11 and   100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))229             print('Changed rows between  101 and  1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))230             print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))231             print('Changed rows                       > 10001 : {} , {}%\n'.format(row['row_5'], int(row['row_5'] * 100 / t_num)))232 233         # 分析 各个行数 DML的类型情况234         # 描述 delete,insert,update的分布情况235         sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)236         self.cur.execute(sql)237         rows=self.cur.fetchall()238 239         print('The distribution map of the {} changed rows : '.format(r_num))240         for row in rows:241 242             if row['sqltype']==1:243                 print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))244             if row['sqltype']==2:245                 print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))246             if row['sqltype']==3:247                 print('DELETE rows :{} , {}%\n '.format(row['nums'],int(row['nums']*100/r_num)))248 249         # 描述 影响行数 最多的表格250         # 可以分析是哪些表格频繁操作,这里显示前10个table name251         sql = '''select 
252                       dbname,tbname ,253                       count(*) ALL_rows,254                       count(*)*100/{} per,255                       count(case when sqltype=1 then 1 end) INSERT_rows,256                       count(case when sqltype=2 then 1 end) UPDATE_rows,257                       count(case when sqltype=3 then 1 end) DELETE_rows258                 from {} 
259                 group by dbname,tbname 
260                 order by ALL_rows desc 
261                 limit 10;'''.format(r_num,self.tbrow)262         self.cur.execute(sql)263         rows = self.cur.fetchall()264 265         print('The distribution map of the {} changed rows : '.format(r_num))266         print('tablename'.ljust(50),267               '|','changed_rows'.center(15),268               '|','percent'.center(10),269               '|','insert_rows'.center(18),270               '|','update_rows'.center(18),271               '|','delete_rows'.center(18)272               )273         print('-------------------------------------------------------------------------------------------------------------------------------------------------')274         for row in rows:275             print((row['dbname']+'.'+row['tbname']).ljust(50),276                   '|',str(row['ALL_rows']).rjust(15),277                   '|',(str(int(row['per']))+'%').rjust(10),278                   '|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),279                   '|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),280                   '|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),281                   )282         print('\n')283 284         logging.info('Finished to analyse the binlog file !!!')285 286     def closeconn(self):287         self.cur.close()288         logging.info('release db connections\n')289 290 def main():291     p = queryanalyse()292     p.rowrecord()293     p.binlogdesc()294     p.closeconn()295 296 if name == "main":297     main()
登入後複製

以上是基於binlog來分析mysql的行記錄修改情況的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1424
52
Laravel 教程
1322
25
PHP教程
1269
29
C# 教程
1249
24
laravel入門實例 laravel入門實例 Apr 18, 2025 pm 12:45 PM

Laravel 是一款 PHP 框架,用於輕鬆構建 Web 應用程序。它提供一系列強大的功能,包括:安裝: 使用 Composer 全局安裝 Laravel CLI,並在項目目錄中創建應用程序。路由: 在 routes/web.php 中定義 URL 和處理函數之間的關係。視圖: 在 resources/views 中創建視圖以呈現應用程序的界面。數據庫集成: 提供與 MySQL 等數據庫的開箱即用集成,並使用遷移來創建和修改表。模型和控制器: 模型表示數據庫實體,控制器處理 HTTP 請求。

MySQL和PhpMyAdmin:核心功能和功能 MySQL和PhpMyAdmin:核心功能和功能 Apr 22, 2025 am 12:12 AM

MySQL和phpMyAdmin是強大的數據庫管理工具。 1)MySQL用於創建數據庫和表、執行DML和SQL查詢。 2)phpMyAdmin提供直觀界面進行數據庫管理、表結構管理、數據操作和用戶權限管理。

MySQL與其他編程語言:一種比較 MySQL與其他編程語言:一種比較 Apr 19, 2025 am 12:22 AM

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

解決數據庫連接問題:使用minii/db庫的實際案例 解決數據庫連接問題:使用minii/db庫的實際案例 Apr 18, 2025 am 07:09 AM

在開發一個小型應用時,我遇到了一個棘手的問題:需要快速集成一個輕量級的數據庫操作庫。嘗試了多個庫後,我發現它們要么功能過多,要么兼容性不佳。最終,我找到了minii/db,這是一個基於Yii2的簡化版本,完美地解決了我的問題。

laravel框架安裝方法 laravel框架安裝方法 Apr 18, 2025 pm 12:54 PM

文章摘要:本文提供了詳細分步說明,指導讀者如何輕鬆安裝 Laravel 框架。 Laravel 是一個功能強大的 PHP 框架,它 упростил 和加快了 web 應用程序的開發過程。本教程涵蓋了從系統要求到配置數據庫和設置路由等各個方面的安裝過程。通過遵循這些步驟,讀者可以快速高效地為他們的 Laravel 項目打下堅實的基礎。

解決MySQL模式問題:TheliaMySQLModesChecker模塊的使用體驗 解決MySQL模式問題:TheliaMySQLModesChecker模塊的使用體驗 Apr 18, 2025 am 08:42 AM

在使用Thelia開發電商網站時,我遇到了一個棘手的問題:MySQL模式設置不當,導致某些功能無法正常運行。經過一番探索,我找到了一個名為TheliaMySQLModesChecker的模塊,它能夠自動修復Thelia所需的MySQL模式,徹底解決了我的困擾。

MySQL:結構化數據和關係數據庫 MySQL:結構化數據和關係數據庫 Apr 18, 2025 am 12:22 AM

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

MySQL:解釋的關鍵功能和功能 MySQL:解釋的關鍵功能和功能 Apr 18, 2025 am 12:17 AM

MySQL是一個開源的關係型數據庫管理系統,廣泛應用於Web開發。它的關鍵特性包括:1.支持多種存儲引擎,如InnoDB和MyISAM,適用於不同場景;2.提供主從復制功能,利於負載均衡和數據備份;3.通過查詢優化和索引使用提高查詢效率。

See all articles