這篇文章主要介紹了Python程式設計實作二元樹及七種遍歷方法,結合實例形式詳細分析了Python二叉樹的定義及常用遍歷操作技巧,需要的朋友可以參考下
本文實例講述了Python實作二元樹及遍歷方法。分享給大家供大家參考,具體如下:
介紹:
樹是資料結構中非常重要的一種,主要的用途是用來提高查找效率,對於要重複查找的情況效果更佳,如二元排序樹、FP-樹。另外可以用來提高編碼效率,如哈佛曼樹。
程式碼:
#用Python實作樹的建構和幾種遍歷演算法,雖然不難,不過還是把程式碼作了一下整理總結。實作功能:
① 樹的建構
② 遞歸實現先序遍歷、中序遍歷、後序遍歷
③ 堆疊實現先序遍歷、中序遍歷、後序遍歷
④ 佇列實作層次遍歷
#coding=utf-8 class Node(object): """节点类""" def init(self, elem=-1, lchild=None, rchild=None): self.elem = elem self.lchild = lchild self.rchild = rchild class Tree(object): """树类""" def init(self): self.root = Node() self.myQueue = [] def add(self, elem): """为树添加节点""" node = Node(elem) if self.root.elem == -1: # 如果树是空的,则对根节点赋值 self.root = node self.myQueue.append(self.root) else: treeNode = self.myQueue[0] # 此结点的子树还没有齐。 if treeNode.lchild == None: treeNode.lchild = node self.myQueue.append(treeNode.lchild) else: treeNode.rchild = node self.myQueue.append(treeNode.rchild) self.myQueue.pop(0) # 如果该结点存在右子树,将此结点丢弃。 def front_digui(self, root): """利用递归实现树的先序遍历""" if root == None: return print root.elem, self.front_digui(root.lchild) self.front_digui(root.rchild) def middle_digui(self, root): """利用递归实现树的中序遍历""" if root == None: return self.middle_digui(root.lchild) print root.elem, self.middle_digui(root.rchild) def later_digui(self, root): """利用递归实现树的后序遍历""" if root == None: return self.later_digui(root.lchild) self.later_digui(root.rchild) print root.elem, def front_stack(self, root): """利用堆栈实现树的先序遍历""" if root == None: return myStack = [] node = root while node or myStack: while node: #从根节点开始,一直找它的左子树 print node.elem, myStack.append(node) node = node.lchild node = myStack.pop() #while结束表示当前节点node为空,即前一个节点没有左子树了 node = node.rchild #开始查看它的右子树 def middle_stack(self, root): """利用堆栈实现树的中序遍历""" if root == None: return myStack = [] node = root while node or myStack: while node: #从根节点开始,一直找它的左子树 myStack.append(node) node = node.lchild node = myStack.pop() #while结束表示当前节点node为空,即前一个节点没有左子树了 print node.elem, node = node.rchild #开始查看它的右子树 def later_stack(self, root): """利用堆栈实现树的后序遍历""" if root == None: return myStack1 = [] myStack2 = [] node = root myStack1.append(node) while myStack1: #这个while循环的功能是找出后序遍历的逆序,存在myStack2里面 node = myStack1.pop() if node.lchild: myStack1.append(node.lchild) if node.rchild: myStack1.append(node.rchild) myStack2.append(node) while myStack2: #将myStack2中的元素出栈,即为后序遍历次序 print myStack2.pop().elem, def level_queue(self, root): """利用队列实现树的层次遍历""" if root == None: return myQueue = [] node = root myQueue.append(node) while myQueue: node = myQueue.pop(0) print node.elem, if node.lchild != None: myQueue.append(node.lchild) if node.rchild != None: myQueue.append(node.rchild) if name == 'main': """主函数""" elems = range(10) #生成十个数据作为树节点 tree = Tree() #新建一个树对象 for elem in elems: tree.add(elem) #逐个添加树的节点 print '队列实现层次遍历:' tree.level_queue(tree.root) print '\n\n递归实现先序遍历:' tree.front_digui(tree.root) print '\n递归实现中序遍历:' tree.middle_digui(tree.root) print '\n递归实现后序遍历:' tree.later_digui(tree.root) print '\n\n堆栈实现先序遍历:' tree.front_stack(tree.root) print '\n堆栈实现中序遍历:' tree.middle_stack(tree.root) print '\n堆栈实现后序遍历:' tree.later_stack(tree.root)
#總結:
##樹的遍歷主要有兩種,一種是深度優先遍歷,像前序、中序、後序;另一種是廣度優先遍歷,像層次遍歷。在樹結構中兩者的差異還不是非常明顯,但從樹擴展到有向圖,到無向圖的時候,深度優先深度優先一般用遞歸,廣度優先一般用佇列。一般情況下能用遞歸實作的演算法大部分也能用堆疊來實現。 我印像中是有遞歸構造樹的方法,卻一直想不出該怎麼構造。後來仔細想了一下,遞迴思想有點類似深度優先演算法,而樹的構造應該是廣度優先的。如果用遞歸的話一定要有個終止條件,例如規定樹深等。不然構造出來的樹會偏向左單子樹或是右單子樹。所以一般樹的構造還是應該用隊列比較好。
以上是Python程式設計如何實現二元樹及七種遍歷的方法詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!