首頁 > Java > java教程 > 詳解深度優先和廣度優先演算法實例

詳解深度優先和廣度優先演算法實例

零下一度
發布: 2017-06-25 10:58:02
原創
5869 人瀏覽過

首先在這裡介紹下Algorithms這個網站第二部分,是Algorithms這本書的線上課程。

另外Coursera上的圖上的演算法的這個課程也很不錯。

 

圖的幾種表示方法:

用那種方式(資料結構)表示圖,這包含以下兩個要求:(1) 空間要適合 (2)實例的方法的實作一定要快速

那麼有三種可供選擇:

(1)邊的集合,如下:

Setofedges graph representation

#簡單但不滿足第二個條件-要實現鄰接表adj()要遍歷圖中所有的邊。

(2)鄰接矩陣:

adjacency-matrix graph

使用一個V乘V的布爾舉證,空間上是不滿足的。

(3)鄰接清單:

adjacency-list graph

#使用頂點為索引的數組列表,其中的每個元素都是和該頂點相鄰的頂點列表。

由於採用如上方式具有比較好的靈活性,採用鄰接列表來表示的話,可以定義如下資料結構來表示一個Graph物件。

public class Graph
{private readonly int verticals;//顶点个数private int edges;//边的个数private List<int>[] adjacency;//顶点联接列表public Graph(int vertical)
    {this.verticals = vertical;this.edges = 0;
        adjacency=new List<int>[vertical];for (int v = 0; v < vertical; v++)
        {
            adjacency[v]=new List<int>();
        }
    }public int GetVerticals ()
    {return verticals;
    }public int GetEdges()
    {return edges;
    }public void AddEdge(int verticalStart, int verticalEnd)
    {
        adjacency[verticalStart].Add(verticalEnd);
        adjacency[verticalEnd].Add(verticalStart);
        edges++;
    }public List<int> GetAdjacency(int vetical)
    {return adjacency[vetical];
    }
}
登入後複製

深度優先演算法

在談論深度優先演算法之前,我們可以先看看迷宮探索問題。下面是一個迷宮和圖之間的對應關係:

#迷宮中的每一個交會點代表圖中的一個頂點,每個通道對應一邊。

maze and graph

迷宮探索可以採用Trémaux繩索探索法。即:

  • 在身後放一個繩子

  • 訪問到的每一個地方放一個繩索標記訪問到的交會點和通道

  • 當遇到已經訪問過的地方,沿著繩索回退到之前沒有訪問過的地方:

圖示如下:

Tremaux maze exploration

#下面是迷宮探索的一個小動畫:

maze exploration

#深度優先搜尋演算法模擬迷宮探索。在實際的圖處理演算法中,我們通常將圖的表示和圖的處理邏輯分開。所以演算法的整體設計模式如下:

  • 建立一個Graph物件

  • ##將Graph對象傳給圖演算法處理對象,如一個Paths對象

  • #然後查詢處理後的結果來取得資訊

我們可以看到,遞歸呼叫dfs方法,維護了一個marked[]標記數組,在呼叫之前判斷該節點是否已經被訪問過

深度優先演算法描述:在存取一個頂點時

1.將它標記為已經存取;

2.遞歸的存取它的所有沒有被標記過的鄰居頂點。

public class DepthFirstSearch
{private bool[] marked;//记录顶点是否被标记private int count;//记录查找次数private DepthFirstSearch(Graph g, int v)
    {
        marked = new bool[g.GetVerticals()];
        dfs(g, v);
    }private void dfs(Graph g, int v)
    {
        marked[v] = true;
        count++;foreach (int vertical in g.GetAdjacency(v))
        {if (!marked[vertical])
                dfs(g,vertical);
        }
    }public bool IsMarked(int vertical)
    {return marked[vertical];
    }public int Count()
    {return count;
    }
}
登入後複製
#

试验一个算法最简单的办法是找一个简单的例子来实现。

trace of depth-first search

算法应用:

连通性。给定一幅图,回答“两个给定顶点是否连通?” 或者 “图中有多少个连通子图?”

寻找路径。给定一幅图和一个起点,回答“从s到给定目的顶点v是否存在一条路径?如果有,找出这条路径。”

检测环。给定的图是无环图吗?

双色问题。能够用两种颜色将图的所有顶点着色,使得任意一条边连个顶点的颜色都不相同?这个问题等价于:这是一个二分图吗?

 

深度优先路径查询

有了这个基础,我们可以实现基于深度优先的路径查询,要实现路径查询,我们必须定义一个变量来记录所探索到的路径

所以在上面的基础上定义一个edgesTo变量来后向记录所有到s的顶点的记录,和仅记录从当前节点到起始节点不同,我们记录图中的每一个节点到开始节点的路径。为了完成这一日任务,通过设置edgesTo[w]=v,我们记录从v到w的边,换句话说,v-w是做后一条从s到达w的边。 edgesTo[]其实是一个指向其父节点的树

注意代码只是在前面算法的基础上维护了一个edgTo数组,并用栈Stack保存路径。

public class DepthFirstPaths
{private bool[] marked;//记录是否被dfs访问过
    private int[] edgesTo;//记录最后一个到当前节点的顶点private int s;//搜索的起始点public DepthFirstPaths(Graph g, int s)
    {
        marked = new bool[g.GetVerticals()];
        edgesTo = new int[g.GetVerticals()];this.s = s;
        dfs(g, s);
    }private void dfs(Graph g, int v)
    {
        marked[v] = true;foreach (int w in g.GetAdjacency(v))
        {if (!marked[w])
            {                edgesTo[w] = v;dfs(g,w);
            }
        }
    }public bool HasPathTo(int v)
    {return marked[v];
    }public Stack<int> PathTo(int v){if (!HasPathTo(v)) return null;
        Stack<int> path = new Stack<int>();for (int x = v; x!=s; x=edgesTo[x])
        {
            path.Push(x);
        }
        path.Push(s);return path;
    }
}
登入後複製

 Trace depth-first search of computer 5

上图中是黑色线条表示 深度优先搜索中,所有定点到原点0的路径, 他是通过edgeTo[]这个变量记录的,可以从右边可以看出,

他其实是一颗树,树根即是原点,每个子节点到树根的路径即是从原点到该子节点的路径。

下图是深度优先搜索算法的一个简单例子的追踪。

 trace depth-first search

 

 

连通分量

API如下:

CC的实现使用了marked[ ]数组来寻找一个顶点作为每个连通分量中深度优先搜索的起点。递归的深搜第一次调用的参数是顶点0,会标记所有与0连通的顶点。然后构造函数中的for循环会查找每个没有被标记的顶点并递归调用dfs来标记和它相邻的所有顶点。另外,它还使用了一个以顶点作为索引的数组id[ ],将同一个连通分量中的顶点和连通分量的标识符关联起来。这个数组使得connected( )方法的实现变得十分简单。

public class CC {private boolean[] marked;private int[] id;private int count;public CC(Graph g){
        marked = new boolean[g.getVertexCount()];
        id = new int[g.getVertexCount()];for(int s = 0; s < g.getVertexCount(); s++){if(!marked[s]){
                dfs(g,s);
                count++;
            }
        }
    }private void dfs(Graph g, int v) {
        marked[v] = true;
        id[v] = count;for(int w: g.adj(v))if(!marked[w])
                dfs(g,w);
    }/** v和w连通吗*/public boolean connected(int v, int w)    { return id[v] == id[w]; }/** v所在的连通分量的标识符*/public int id(int v)    { return id[v]; }/** 连通分量数*/public int count()        {return count;}
登入後複製

 

检测环

/**
 * 给定的图是无环图吗
 * 检测自环:假设没有自环,没有平行边 */public class Cycle {private boolean[] marked;private boolean hasCycle;public Cycle(Graph g){
        marked = new boolean[g.getVertexCount()];for(int i = 0;i<g.getVertexCount();i++)if(!marked[i])    dfs(g, i, i);
    }private void dfs(Graph g, int v, int u) {
        marked[v] = true;for(int w: g.adj(v))if(!marked[w])    dfs(g, w, v); // 若w没被标记过,那么从w继续递归深搜,把w的父节点作为第二参数else if(w != u) hasCycle = true; // 若w被标记过,那么若无环,w必然和父节点相同,否则就是有环    }/** 是否含有环*/public boolean hasCycle(){return hasCycle;}
登入後複製

 

双色问题

/**
 * 双色问题:能够用两种颜色将图的所有顶点着色,使得任意一条边上的两个端点的颜色都不同吗?
 * 等价于:判断是否是二分图的问题 */public class TwoColor {private boolean[] marked;private boolean[] color;private boolean isColorable;public TwoColor(Graph g){
        isColorable = true;
        marked = new boolean[g.getVertexCount()];
        color = new boolean[g.getVertexCount()];for(int i = 0; i<g.getVertexCount(); i++)//遍历所有顶点if(!marked[i])    dfs(g, i);//没有mark就进行深搜    }private void dfs(Graph g, int v) {
        marked[v] = true;        // 标记for(int w: g.adj(v))    // 对邻接表进行遍历if(!marked[w]){        // 如果没有被标记color[w] = !color[v];    // 当前w节点颜色置为和父节点不同的颜色dfs(g, w);                // 对当前节点继续深搜}else if(color[w] == color[v]){    // 如果已经被标记,看是否颜色和父节点相同isColorable = false;         // 若相同则不是二分图            }
    }/** 是否是二分图*/public boolean isBipartite(){return isColorable;}
登入後複製

 

 

广度优先算法

通常我们更关注的是一类单源最短路径的问题,那就是给定一个图和一个源S,是否存在一条从s到给定定点v的路径,如果存在,找出最短的那条(这里最短定义为边的条数最小)

深度优先算法是将未被访问的节点放到一个堆中(stack),虽然在上面的代码中没有明确在代码中写stack,但是 递归间接的利用递归堆实现了这一原理。

和深度优先算法不同, 广度优先是将所有未被访问的节点放到了队列中。其主要原理是:

先将起点加入队列,然后重复一下步骤直到队列为空:

1.取队列中的下一个顶点V并标记它

2.将与v相邻的所有未被标记过的顶点加入队列

广度优先是以距离递增的方式来搜索路径的。

class BreadthFirstSearch
{private bool[] marked;private int[] edgeTo;private int sourceVetical;//Source verticalpublic BreadthFirstSearch(Graph g, int s)
    {
        marked=new bool[g.GetVerticals()];
        edgeTo=new int[g.GetVerticals()];this.sourceVetical = s;
        bfs(g, s);
    }private void bfs(Graph g, int s)
    {
        Queue<int> queue = new Queue<int>();
        marked[s] = true;
        queue.Enqueue(s);while (queue.Count()!=0)
        {int v = queue.Dequeue();foreach (int w in g.GetAdjacency(v))
            {if (!marked[w])
                {
                    edgeTo[w] = v;
                    marked[w] = true;
                    queue.Enqueue(w);
                }
            }
        }
    }public bool HasPathTo(int v)
    {return marked[v];
    }public Stack<int> PathTo(int v)
    {if (!HasPathTo(v)) return null;

        Stack<int> path = new Stack<int>();for (int x = v; x!=sourceVetical; x=edgeTo[x])
        {
            path.Push(x);
        }
        path.Push(sourceVetical);return path;
    }

}
登入後複製

算法应用:最短路径问题

 

总结:

深度优先搜索和广度优先搜索都是将起点存入数据结构中,然后重复一下步骤直到数据结构被清空:

1.取其中的下一个顶点并标记它

2.将v的所有相邻而未被标记的顶点加入数据结构

这两个算法 的不同之处仅在于从数据结构中获取下一个顶点的规则(广度优先来说是最早加入的顶点,对于深度优先搜索来说是最晚加入的顶点)。

 

以上是詳解深度優先和廣度優先演算法實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
最新問題
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板