總結Python編碼需要注意的地方
1、map, filter, reduce
1) map(func, input_list)
將函數套用到輸入清單上的每個元素, 如:
input_list = [1, 2 , 3, 4, 5]
def pow_elem(x):
"""
將x做乘運算子運算
:param x:
# :#:return:return:return:
"""
return x * x
#def multi_x_y(x, y):
return x * y
print map(pow_elem, input_list) # output:[1, 4, 9, 16, 25]
print map(multi_x_y, input_list, input_list) # output:[1, 4, 9, 16, 25]
2) filter(func_or_none, sequence)
過濾篩選出sequence中滿足函數返回True的值,組成新的sequence返回,如:
def is_odd(x):
"""
#判斷x是否為奇數
:param x:
:return:
"""
return True if x % 2 > 0 else False
reduce()函數接收的參數和map()類似,一個函數f,一個list,但行為和map()不同,reduce()傳入的函數f 必須接收兩個參數,reduce()對list的每個元素重複呼叫函數f,並傳回最終結果值。例如:reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) 等價於((((1+2)+3)+4)+5)
print reduce (lambda x, y: x * y, input_list) # output: 120
下面兩種寫法等價:
"Yes" if 2==2 else " No"
("No", "Yes")[2==2]
即:
1) condition_is_true if condition else condition_is_false
2) (if_test_is_false, if_test_is_true)[test]
1)和2)都能實現三元運算, 但是2)較為少見,且不太優雅,同時2)並不是一個短路運算,如下:
5 if True else 5/0 # output: 5
(1/0, 5)[True] # throw exception-> ZeroDivisionError: integer division or modulo by zero
1) Python中,我們可以在函數內部定義函數並調用,如:
def hi(name="patty"):
print("now you are inside the hi() function")
return "now you are in the greet() function"
return "now you are in the welcome() function"
print(welcome())
print("now you are back in the hi() function")
輸出結果為:
now you are inside the hi() function
now you are in the greet() function
now you are in the welcome() function
now you are back in the hi() function
def hi(name="patty"):
def greet():
return "now you are in the greet() function"
return "now you are in the welcome() function"
print hi() # <# <# <# <# <# ;function greet at 0x109379a28>
print hi()() # now you are in the greet() function
上述程式碼中,hi()呼叫傳回的是一個function對象,從if/else語句可以判斷出,回傳的是greet()函數,當我們呼叫hi()()時,其實是呼叫了內部函數greet()。
def hi():
return "hi patty!"
print("I am doing some boring work before executing hi()")
print(func())
輸出結果:
I ##doing someam
doing boring work before executing hi()
hi patty!
至此, 我們已經實作了一個簡單的裝飾器, 在呼叫hi()函數之前, 先輸出一行,實際應用中可能是一些預處理操作。實際上,裝飾器的功能就是在你的核心邏輯執行前後,加上一些通用的功能。
4) 簡單裝飾器的實作
def a_new_decorator(a_func):
def wrapTheFunction():
print("I am doing some boring work before executing a_func(unc) ")
a_func() # call this function
print("I am doing some boring work after executing a_func()")
return wrapTheFunction
def a_function_requiring_decoration():
print("I am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration() smell")
a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
a_function_requiring_decoration()
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell#acon smell working a_func()
@a_new_decorator
def b_function_requiring_decoration():
print("I am the another function which needs some decoration to remove my am the another function which needs some decoration to remove my smul smell"
#b_function_requiring_decoration()
# I am the another function which needs some decoupration to remove my foul smell#doboron smell#dobor aamration to remove my foul smell#. after executing a_func()
此處@a_new_decorator就等價於a_new_decorator(b_function_requiring_decoration)
#6) 取得name
對於4)中的a_function_requiring_decoration,__recon 得到的列印_confunction_requiring_decoration,__reconn_confunction_prints 的__結果是wrapTheFunction,而實際上我們希望得到的是a_func所對應的a_function_requiring_decoration函數名,Python為我們提供了wraps用來解決這個問題。
def a_new_decorator(a_func):
@wraps(a_func)
def wrapTheFunction():
100 50 月)
a_func()
使用者認證
def requires_auth(f): @wraps(f)
def decorated(*args, **kwargs):
auth = {"username":uth = {"username":
#」 "patty", "password": "123456"}
if not check_auth(auth['username'], auth['password']):
*kwargs)
def check_auth(username, password):
print "Starting check auth..."
def authenticate():
return decorated
@requires_auth"##we lc 但Welcome patty!"
日誌記錄
def logit(func):
def with_logging(*args, ** kwargs):
print(func.__name__ + " was called") return func(*args, **kwargs)
return with_logging#unc
#_#)_funcf ):
"""Do some math."""
return x + x
將會列印:addition_func was called
8)帶有參數的裝飾器
from functools import wraps
def logit(logfile='out.log'):
def logging_decorator(func):
@wraps(func )
log_string = func.__name__ + " was called"
. # Open the logfile and append
# Now we log to the specified logfile
. _function
return logging_decorator
@logit()
def myfunc1():
pass
#myfunc1()
# Output: myfunc1 was called
# A file called out.log now exists, with the above string
def myfunc2():
pass
9) 以類別為裝飾器
import os
def __init__(self, log_file):
self.log_file = log_uncfile
##def __call__(self, funcfile
with open(self.log_file, 'a') as fout:
log_msg = func.__name__ + " was c) fout.write(os.linesep) # Now, send a notification
self.notify()
def notify(self):
# logit only logs, no
class EmailLogit(Logit):
'''
A logit implementation for sending emails to admins
when the function is cmplementation for sending emails to admins
when the function is c家庭, email='admin@myproject.com'):
self.email = email
super(EmailLogit, self).__init__ Send an email to self.email
# Will not be implemented here
Do ## f.write(os.linesep)
f.write("Email has send to " + self.e )## ("log1.txt")
def myfunc3():
pass
@EmailLogit("log2.txt")
def myfunc4():
pass
4、可變類型
Python中的可變類型包括列表和字典,這些物件中的元素是可改變的,如
>>> foo = ['hi ']
>>> foo
['hi', 'patty']
>>> foo[0]='hello'
>>> foo
>>> fdict = {"name":" patty"}
>>> fdict.update({"age":"23"})
>>> fdict
{'age': '23', 'name ': 'patty'}
>>> fdict.update({"age":"25"})
>>> fdict
{'age': '25' , 'name': 'patty'}
>>> def add_to(num, target=[]):
... target.append(num)
... return target
...
>>> add_to(1)
[1]
>>> add_to(2)
>>> add_to(3)
[1, 2, 3]
這是因為, 預設參數在方法被定義時進行計算,而不是每次呼叫時再計算一次。因此, 為了避免上述情況, 當我們預期每次方法被呼叫時,以一個新的空列表進行計算的時候,可採取如下寫法:
>>> def add_to(num, target= None):
... if target is None:
... target = []
... target.append(num)
... return target
...
>>> add_to(1)
[1]
>>> add_to(2)
[2]
#5、淺拷貝和深拷貝
Python中,物件的賦值,拷貝(深/淺拷貝)之間是有差異的,如果使用的時候不注意,就可能產生意外的結果。
1) Python中預設是淺拷貝方式
>>> foo = ['hi']
>>> bar = foo
>>> id (foo)
4458211232
>>> id(bar)
>>> bar.append("patty")
>>>> bar.append("patty")
>>> bar
['hi', 'patty']
>>> foo
#['hi', 'patty']
注意:id(foo)==id(bar) ,說明foo和bar引用的是同一個對象, 當透過bar引用對list進行append操作時, 由於指向的是同一塊記憶體空間,foo的輸出與bar是一致的。
2) 深拷貝
>>> foo
['hi', {'age': 20, 'name': 'patty'}]
>> ;> import copy
>>> slow = copy.deepcopy(foo)
>>> slow
['hi', {'age': 20, 'name' : 'patty'}]
>>> slow
#['hello', {'age': 20, 'name ': 'patty'}]
>>> foo
['hi', {'age': 20, 'name': 'patty'}]
注意: 由於slow是對foo的深拷貝,實際上是在內存中新開了一片空間,將foo對象所引用的內容複製到新的內存空間中,因此當對slow對象所引用的內容進行update操作後,更改只體現在slow物件的引用上,而foo物件所引用的內容並沒有改變。
6、集合Collection
1) defaultdict
對於普通的dict,若是取得不存在的key,會引發KeyError錯誤,如下:
some_dict = {}
some_dict['colours' ]['favourite'] = "yellow"
# Raises KeyError: 'colours'
但是透過defaultdict,我們可以避免這種情況的發生, 如下:
import collections
import json
tree = lambda: collections.defaultdict(tree)
some_dict = tree()
some_dict['colours']['favourite'] = "yellow"
print json.dumps(some_dict)
# Works fine, output: {"colours": {"favourite": "yellow"}}
2) OrderedDict
OrderedDict能夠按照我們定義字典時的key順序列印輸出字典,改變value的數值不會改變key的順序, 但是,對key進行刪除,重新插入後,key會重新排序到dict的尾部。
from collections import OrderedDict
colours = OrderedDict([("Red", 198), ("Green", 170), ("Blue", 160)])
for key, value in colours.items():
print(key, value)
3)Counter
利用Counter,可以統計出特定項目的出現次數,如:
from collections import Counter
colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
# ( 'Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),
)
favs = Counter(name for name, colour in colours)
print(favs)
# Counter({'Yasoob': 2, 'Ali': 2, 'Arham': 1, 'Ahmed': 1})
4)deque
deque是一個雙端佇列,可在頭尾分別進行插入,刪除操作, 如下:
from collections import deque
queue_d = deque()
queue_d.append( 1)
queue_d.append(2)
print queue_d # deque([1, 2])
queue_d.appendleft(3)
print queue_d # deque([3, 1, 2])
queue_d.pop()
print queue_d # deque([3, 1])
queue_d.popleft()
print queue_d # deque([1])
#deque可以設定佇列的最大長度,當元素數目超過最大長度時,會從目前帶插入方向的反方向刪除對應數目的元素,如下:
queue_c = deque(maxlen=5, iterable=[2, 4, 6])
queue_c.extend([7, 8])
print queue_c # deque([2, 4, 6, 7, 8], maxlen=5)
queue_c.extend([ 10, 12])
print(queue_c) # deque([6, 7, 8, 10, 12], maxlen=5)
queue_c.extendleft([18])
print(queue_c) # deque([18, 6, 7, 8, 10], maxlen=5)
5)nametuple
tuple是不可變的列表,不可以對tuple中的元素重新賦值,我們只能透過index去存取tuple中的元素。 nametuple可看做不可變的字典,可透過name去存取tuple中的元素。如:
from collections import namedtuple
Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat ")
print(perry)
# Output: Animal(name='perry', age=31, type='cat')
print(perry.name)
# Output: 'perry'
print(perry[0])
# Output: 'perry'
print(perry._asdict())
# Output: OrderedDict ([('name', 'perry'), ('age', 31), ('type', 'cat')])
7、Object introspection
1) dir: 列舉該物件的所有方法
2)type: 傳回物件的類型
3)id: 傳回物件的id
8、生成器
1)list
>>> ; squared = [x**2 for x in range(10)]
>>> squared
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
2) dict
{v: k for k, v in some_dict.items()}
3) set
>>> squared = {x**2 for x in range (10)}
>>> squared
set([0, 1, 4, 81, 64, 9, 16, 49, 25, 36])
9、異常處理
try:
print('I am sure no exception is going to occur!')
except Exception:
print('exception')
else:
print('exception')
else:
# anycode # that should only run if no exception occurs in the try,
# but for which exceptions should NOT be caught
print('This would only run if no exception comcurs. And an be caught.')
finally:
# Output: I am sure no exception is going to occur!
This would only run if no exception occurs.
# This would be printed in every case.
10、內建方法
a_list = [[1, 2], [3, 4], [5, 6]]
print(list(itertools.chain.from_iterable(a_list)) )
# or
print(list(itertools.chain(*a_list)))
class A(object):
def __init__(self, a, b, c, d, e, f):
self.__dict__.update({k: v for k, v in locals().items() if k != 'self'})
11、for-else語句
for語句的正常結束方式有兩種:一是滿足特定條件的情況下break跳出循環,二是所有條件循環結束。 for-else中的else語句只有在所有條件都經過判斷然後正常結束for循環的情況下,才被執行,如下:
for x in range(1, 10, 2):
if x % 2 == 0:
print "found even of %d"%x
break
else:
print "not foud even"
# output: not foud even
12.相容Python 2+和Python 3+
1) 利用__future__模組在Python 2+的環境中引用Python 3+的模組
2)相容的模組導入方式
try:
import urllib。 #
以上是總結Python編碼需要注意的地方的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
