本文分析了HashMap的實作原理,以及resize可能造成死迴圈和Fast-fail等執行緒不安全行為。同時結合原始碼從資料結構,尋址方式,同步方式,計算size等角度分析了JDK 1.7和JDK 1.8中ConcurrentHashMap的實作原理。
眾所周知,HashMap是非線程安全的。而HashMap的執行緒不安全主要體現在resize時的死迴圈及使用迭代器時的fast-fail。
附註:本章的程式碼皆基於JDK 1.7.0_67
public static int highestOneBit(int i) { i |= (i >> 1); i |= (i >> 2); i |= (i >> 4); i |= (i >> 8); i |= (i >> 16); return i - (i >>> 1); }
int h = hashSeed; h ^= k.hashCode(); h ^= (h >>> 20) ^ (h >>> 12);return h ^ (h >>> 7) ^ (h >>> 4);
void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry<K,V> e : table) { while(null != e) { Entry<K,V> next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } }
e.next = newTable[1] = nullnewTable[1] = e = key(5) e = next = key(9)
##此時循環鍊錶形成,且key(11)無法加入到執行緒1的新陣列。在下一次存取該鍊錶時會出現死循環。
Fast-fail
將被拋出,也即Fast-fail策略。 當HashMap的iterator()方法被呼叫時,會建構並傳回一個新的EntryIterator對象,並將EntryIterator的expectedModCount設定為HashMap的modCount(該變數記錄了HashMap被修改的次數)。
HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } }
在通过该Iterator的next方法访问下一个Entry时,它会先检查自己的expectedModCount与HashMap的modCount是否相等,如果不相等,说明HashMap被修改,直接抛出ConcurrentModificationException
。该Iterator的remove方法也会做类似的检查。该异常的抛出意在提醒用户及早意识到线程安全问题。
单线程条件下,为避免出现ConcurrentModificationException
,需要保证只通过HashMap本身或者只通过Iterator去修改数据,不能在Iterator使用结束之前使用HashMap本身的方法修改数据。因为通过Iterator删除数据时,HashMap的modCount和Iterator的expectedModCount都会自增,不影响二者的相等性。如果是增加数据,只能通过HashMap本身的方法完成,此时如果要继续遍历数据,需要重新调用iterator()方法从而重新构造出一个新的Iterator,使得新Iterator的expectedModCount与更新后的HashMap的modCount相等。
多线程条件下,可使用Collections.synchronizedMap
方法构造出一个同步Map,或者直接使用线程安全的ConcurrentHashMap。
注:本章的代码均基于JDK 1.7.0_67
Java 7中的ConcurrentHashMap的底层数据结构仍然是数组和链表。与HashMap不同的是,ConcurrentHashMap最外层不是一个大的数组,而是一个Segment的数组。每个Segment包含一个与HashMap数据结构差不多的链表数组。整体数据结构如下图所示。
在读写某个Key时,先取该Key的哈希值。并将哈希值的高N位对Segment个数取模从而得到该Key应该属于哪个Segment,接着如同操作HashMap一样操作这个Segment。为了保证不同的值均匀分布到不同的Segment,需要通过如下方法计算哈希值。
private int hash(Object k) { int h = hashSeed; if ((0 != h) && (k instanceof String)) { return sun.misc.Hashing.stringHash32((String) k); } h ^= k.hashCode(); h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); }
同样为了提高取模运算效率,通过如下计算,ssize即为大于concurrencyLevel的最小的2的N次方,同时segmentMask为2^N-1。这一点跟上文中计算数组长度的方法一致。对于某一个Key的哈希值,只需要向右移segmentShift位以取高sshift位,再与segmentMask取与操作即可得到它在Segment数组上的索引。
int sshift = 0;int ssize = 1;while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; }this.segmentShift = 32 - sshift;this.segmentMask = ssize - 1; Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
Segment继承自ReentrantLock,所以我们可以很方便的对每一个Segment上锁。
对于读操作,获取Key所在的Segment时,需要保证可见性(请参考如何保证多线程条件下的可见性)。具体实现上可以使用volatile关键字,也可使用锁。但使用锁开销太大,而使用volatile时每次写操作都会让所有CPU内缓存无效,也有一定开销。ConcurrentHashMap使用如下方法保证可见性,取得最新的Segment。
Segment<K,V> s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)
获取Segment中的HashEntry时也使用了类似方法
HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE)
对于写操作,并不要求同时获取所有Segment的锁,因为那样相当于锁住了整个Map。它会先获取该Key-Value对所在的Segment的锁,获取成功后就可以像操作一个普通的HashMap一样操作该Segment,并保证该Segment的安全性。
同时由于其它Segment的锁并未被获取,因此理论上可支持concurrencyLevel(等于Segment的个数)个线程安全的并发读写。
获取锁时,并不直接使用lock来获取,因为该方法获取锁失败时会挂起(参考可重入锁)。事实上,它使用了自旋锁,如果tryLock获取锁失败,说明锁被其它线程占用,此时通过循环再次以tryLock的方式申请锁。如果在循环过程中该Key所对应的链表头被修改,则重置retry次数。如果retry次数超过一定值,则使用lock方法申请锁。
这里使用自旋锁是因为自旋锁的效率比较高,但是它消耗CPU资源比较多,因此在自旋次数超过阈值时切换为互斥锁。
put、remove和get操作只需要关心一个Segment,而size操作需要遍历所有的Segment才能算出整个Map的大小。一个简单的方案是,先锁住所有Sgment,计算完后再解锁。但这样做,在做size操作时,不仅无法对Map进行写操作,同时也无法进行读操作,不利于对Map的并行操作。
为更好支持并发操作,ConcurrentHashMap会在不上锁的前提逐个Segment计算3次size,如果某相邻两次计算获取的所有Segment的更新次数(每个Segment都与HashMap一样通过modCount跟踪自己的修改次数,Segment每修改一次其modCount加一)相等,说明这两次计算过程中无更新操作,则这两次计算出的总size相等,可直接作为最终结果返回。如果这三次计算过程中Map有更新,则对所有Segment加锁重新计算Size。该计算方法代码如下
public int size() { final Segment<K,V>[] segments = this.segments; int size; boolean overflow; // true if size overflows 32 bits long sum; // sum of modCounts long last = 0L; // previous sum int retries = -1; // first iteration isn't retry try {for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // force creation } sum = 0L; size = 0; overflow = false; for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j);if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0) overflow = true; } } if (sum == last)break; last = sum; } } finally {if (retries > RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j)segmentAt(segments, j).unlock(); } } return overflow ? Integer.MAX_VALUE : size; }
ConcurrentHashMap与HashMap相比,有以下不同点
ConcurrentHashMap线程安全,而HashMap非线程安全
HashMap允许Key和Value为null,而ConcurrentHashMap不允许
HashMap不允许通过Iterator遍历的同时通过HashMap修改,而ConcurrentHashMap允许该行为,并且该更新对后续的遍历可见
注:本章的代码均基于JDK 1.8.0_111
Java 7为实现并行访问,引入了Segment这一结构,实现了分段锁,理论上最大并发度与Segment个数相等。Java 8为进一步提高并发性,摒弃了分段锁的方案,而是直接使用一个大的数组。同时为了提高哈希碰撞下的寻址性能,Java 8在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为O(N))转换为红黑树(寻址时间复杂度为O(long(N)))。其数据结构如下图所示
Java 8的ConcurrentHashMap同样是通过Key的哈希值与数组长度取模确定该Key在数组中的索引。同样为了避免不太好的Key的hashCode设计,它通过如下方法计算得到Key的最终哈希值。不同的是,Java 8的ConcurrentHashMap作者认为引入红黑树后,即使哈希冲突比较严重,寻址效率也足够高,所以作者并未在哈希值的计算上做过多设计,只是将Key的hashCode值与其高16位作异或并保证最高位为0(从而保证最终结果为正整数)。
static final int spread(int h) { return (h ^ (h >>> 16)) & HASH_BITS; }
对于put操作,如果Key对应的数组元素为null,则通过CAS操作将其设置为当前值。如果Key对应的数组元素(也即链表表头或者树的根元素)不为null,则对该元素使用synchronized关键字申请锁,然后进行操作。如果该put操作使得当前链表长度超过一定阈值,则将该链表转换为树,从而提高寻址效率。
对于读操作,由于数组被volatile关键字修饰,因此不用担心数组的可见性问题。同时每个元素是一个Node实例(Java 7中每个元素是一个HashEntry),它的Key值和hash值都由final修饰,不可变更,无须关心它们被修改后的可见性问题。而其Value及对下一个元素的引用由volatile修饰,可见性也有保障。
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; volatile V val; volatile Node<K,V> next; }
对于Key对应的数组元素的可见性,由Unsafe的getObjectVolatile方法保证。
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); }
put方法和remove方法都会通过addCount方法维护Map的size。size方法通过sumCount获取由addCount方法维护的Map的size。
以上是分享HashMap的實作原理的詳細內容。更多資訊請關注PHP中文網其他相關文章!