【機器學習】資料預處理之將類別資料轉換為數值
在進行python資料分析的時候,首先要進行資料預處理。
有時候必須處理一些非數值類別的數據,嗯, 今天要說的就是面對這些數據該如何處理。
目前了解到的大概有三種方法:
1,透過LabelEncoder來進行快速的轉換;
2,透過mapping方式,將類別對應為數值。不過這種方法適用範圍有限;
3,透過get_dummies方法轉換。
<span style="color: #008080"> 1</span> <span style="color: #0000ff">import</span><span style="color: #000000"> pandas as pd </span><span style="color: #008080"> 2</span> <span style="color: #0000ff">from</span> io <span style="color: #0000ff">import</span><span style="color: #000000"> StringIO </span><span style="color: #008080"> 3</span> <span style="color: #008080"> 4</span> csv_data = <span style="color: #800000">'''</span><span style="color: #800000">A,B,C,D </span><span style="color: #008080"> 5</span> <span style="color: #800000">1,2,3,4 </span><span style="color: #008080"> 6</span> <span style="color: #800000">5,6,,8 </span><span style="color: #008080"> 7</span> <span style="color: #800000">0,11,12,</span><span style="color: #800000">'''</span> <span style="color: #008080"> 8</span> <span style="color: #008080"> 9</span> df =<span style="color: #000000"> pd.read_csv(StringIO(csv_data)) </span><span style="color: #008080">10</span> <span style="color: #0000ff">print</span><span style="color: #000000">(df) </span><span style="color: #008080">11</span> <span style="color: #008000">#</span><span style="color: #008000">统计为空的数目</span> <span style="color: #008080">12</span> <span style="color: #0000ff">print</span><span style="color: #000000">(df.isnull().sum()) </span><span style="color: #008080">13</span> <span style="color: #0000ff">print</span><span style="color: #000000">(df.values) </span><span style="color: #008080">14</span> <span style="color: #008080">15</span> <span style="color: #008000">#</span><span style="color: #008000">丢弃空的</span> <span style="color: #008080">16</span> <span style="color: #0000ff">print</span><span style="color: #000000">(df.dropna()) </span><span style="color: #008080">17</span> <span style="color: #0000ff">print</span>(<span style="color: #800000">'</span><span style="color: #800000">after</span><span style="color: #800000">'</span><span style="color: #000000">, df) </span><span style="color: #008080">18</span> <span style="color: #0000ff">from</span> sklearn.preprocessing <span style="color: #0000ff">import</span><span style="color: #000000"> Imputer </span><span style="color: #008080">19</span> <span style="color: #008000">#</span><span style="color: #008000"> axis=0 列 axis = 1 行</span> <span style="color: #008080">20</span> imr = Imputer(missing_values=<span style="color: #800000">'</span><span style="color: #800000">NaN</span><span style="color: #800000">'</span>, strategy=<span style="color: #800000">'</span><span style="color: #800000">mean</span><span style="color: #800000">'</span>, axis=<span style="color: #000000">0) </span><span style="color: #008080">21</span> imr.fit(df) <span style="color: #008000">#</span><span style="color: #008000"> fit 构建得到数据</span> <span style="color: #008080">22</span> imputed_data = imr.transform(df.values) <span style="color: #008000">#</span><span style="color: #008000">transform 将数据进行填充</span> <span style="color: #008080">23</span> <span style="color: #0000ff">print</span><span style="color: #000000">(imputed_data) </span><span style="color: #008080">24</span> <span style="color: #008080">25</span> df = pd.DataFrame([[<span style="color: #800000">'</span><span style="color: #800000">green</span><span style="color: #800000">'</span>, <span style="color: #800000">'</span><span style="color: #800000">M</span><span style="color: #800000">'</span>, 10.1, <span style="color: #800000">'</span><span style="color: #800000">class1</span><span style="color: #800000">'</span><span style="color: #000000">], </span><span style="color: #008080">26</span> [<span style="color: #800000">'</span><span style="color: #800000">red</span><span style="color: #800000">'</span>, <span style="color: #800000">'</span><span style="color: #800000">L</span><span style="color: #800000">'</span>, 13.5, <span style="color: #800000">'</span><span style="color: #800000">class2</span><span style="color: #800000">'</span><span style="color: #000000">], </span><span style="color: #008080">27</span> [<span style="color: #800000">'</span><span style="color: #800000">blue</span><span style="color: #800000">'</span>, <span style="color: #800000">'</span><span style="color: #800000">XL</span><span style="color: #800000">'</span>, 15.3, <span style="color: #800000">'</span><span style="color: #800000">class1</span><span style="color: #800000">'</span><span style="color: #000000">]]) </span><span style="color: #008080">28</span> df.columns =[<span style="color: #800000">'</span><span style="color: #800000">color</span><span style="color: #800000">'</span>, <span style="color: #800000">'</span><span style="color: #800000">size</span><span style="color: #800000">'</span>, <span style="color: #800000">'</span><span style="color: #800000">price</span><span style="color: #800000">'</span>, <span style="color: #800000">'</span><span style="color: #800000">classlabel</span><span style="color: #800000">'</span><span style="color: #000000">] </span><span style="color: #008080">29</span> <span style="color: #0000ff">print</span><span style="color: #000000">(df) </span><span style="color: #008080">30</span> <span style="color: #008080">31</span> size_mapping = {<span style="color: #800000">'</span><span style="color: #800000">XL</span><span style="color: #800000">'</span>:3, <span style="color: #800000">'</span><span style="color: #800000">L</span><span style="color: #800000">'</span>:2, <span style="color: #800000">'</span><span style="color: #800000">M</span><span style="color: #800000">'</span>:1<span style="color: #000000">} </span><span style="color: #008080">32</span> df[<span style="color: #800000">'</span><span style="color: #800000">size</span><span style="color: #800000">'</span>] = df[<span style="color: #800000">'</span><span style="color: #800000">size</span><span style="color: #800000">'</span><span style="color: #000000">].map(size_mapping) </span><span style="color: #008080">33</span> <span style="color: #0000ff">print</span><span style="color: #000000">(df) </span><span style="color: #008080">34</span> <span style="color: #008080">35</span> <span style="color: #008000">#</span><span style="color: #008000"># 遍历Series</span> <span style="color: #008080">36</span> <span style="color: #0000ff">for</span> idx, label <span style="color: #0000ff">in</span> enumerate(df[<span style="color: #800000">'</span><span style="color: #800000">classlabel</span><span style="color: #800000">'</span><span style="color: #000000">]): </span><span style="color: #008080">37</span> <span style="color: #0000ff">print</span><span style="color: #000000">(idx, label) </span><span style="color: #008080">38</span> <span style="color: #008080">39</span> <span style="color: #008000">#</span><span style="color: #008000">1, 利用LabelEncoder类快速编码,但此时对color并不适合,</span> <span style="color: #008080">40</span> <span style="color: #008000">#</span><span style="color: #008000">看起来,好像是有大小的</span> <span style="color: #008080">41</span> <span style="color: #0000ff">from</span> sklearn.preprocessing <span style="color: #0000ff">import</span><span style="color: #000000"> LabelEncoder </span><span style="color: #008080">42</span> class_le =<span style="color: #000000"> LabelEncoder() </span><span style="color: #008080">43</span> color_le =<span style="color: #000000"> LabelEncoder() </span><span style="color: #008080">44</span> df[<span style="color: #800000">'</span><span style="color: #800000">classlabel</span><span style="color: #800000">'</span>] = class_le.fit_transform(df[<span style="color: #800000">'</span><span style="color: #800000">classlabel</span><span style="color: #800000">'</span><span style="color: #000000">].values) </span><span style="color: #008080">45</span> <span style="color: #008000">#</span><span style="color: #008000">df['color'] = color_le.fit_transform(df['color'].values)</span> <span style="color: #008080">46</span> <span style="color: #0000ff">print</span><span style="color: #000000">(df) </span><span style="color: #008080">47</span> <span style="color: #008080">48</span> <span style="color: #008000">#</span><span style="color: #008000">2, 映射字典将类标转换为整数</span> <span style="color: #008080">49</span> <span style="color: #0000ff">import</span><span style="color: #000000"> numpy as np </span><span style="color: #008080">50</span> class_mapping = {label: idx <span style="color: #0000ff">for</span> idx, label <span style="color: #0000ff">in</span> enumerate(np.unique(df[<span style="color: #800000">'</span><span style="color: #800000">classlabel</span><span style="color: #800000">'</span><span style="color: #000000">]))} </span><span style="color: #008080">51</span> df[<span style="color: #800000">'</span><span style="color: #800000">classlabel</span><span style="color: #800000">'</span>] = df[<span style="color: #800000">'</span><span style="color: #800000">classlabel</span><span style="color: #800000">'</span><span style="color: #000000">].map(class_mapping) </span><span style="color: #008080">52</span> <span style="color: #0000ff">print</span>(<span style="color: #800000">'</span><span style="color: #800000">2,</span><span style="color: #800000">'</span><span style="color: #000000">, df) </span><span style="color: #008080">53</span> <span style="color: #008080">54</span> <span style="color: #008080">55</span> <span style="color: #008000">#</span><span style="color: #008000">3,处理1不适用的</span> <span style="color: #008080">56</span> <span style="color: #008000">#</span><span style="color: #008000">利用创建一个新的虚拟特征</span> <span style="color: #008080">57</span> <span style="color: #0000ff">from</span> sklearn.preprocessing <span style="color: #0000ff">import</span><span style="color: #000000"> OneHotEncoder </span><span style="color: #008080">58</span> pf = pd.get_dummies(df[[<span style="color: #800000">'</span><span style="color: #800000">color</span><span style="color: #800000">'</span><span style="color: #000000">]]) </span><span style="color: #008080">59</span> df = pd.concat([df, pf], axis=1<span style="color: #000000">) </span><span style="color: #008080">60</span> df.drop([<span style="color: #800000">'</span><span style="color: #800000">color</span><span style="color: #800000">'</span>], axis=1, inplace=<span style="color: #000000">True) </span><span style="color: #008080">61</span> <span style="color: #0000ff">print</span>(df)
以上是【機器學習】資料預處理之將類別資料轉換為數值的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

如果您需要了解如何在Excel中使用具有多個條件的篩選功能,以下教學將引導您完成對應步驟,確保您可以有效地篩選資料和排序資料。 Excel的篩選功能是非常強大的,能夠幫助您從大量資料中提取所需的資訊。這個功能可以根據您設定的條件,過濾資料並只顯示符合條件的部分,讓資料的管理變得更有效率。透過使用篩選功能,您可以快速找到目標數據,節省了尋找和整理數據的時間。這個功能不僅可以應用在簡單的資料清單上,還可以根據多個條件進行篩選,幫助您更精準地定位所需資訊。總的來說,Excel的篩選功能是一個非常實用的

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高
