Python生成器的介紹與使用
python中的generator保存的是演算法,真正需要計算出值的時候才會去往下計算出值。它是一種惰性計算(lazy evaluation)。
要建立一個generator有兩種方式。
第一種方法:把一個列表產生式的[]改成(),就創建了一個generator:
>>> L = [x * x for x in range(10)]>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]>>> g = (x * x for x in range(10)) # 注意把[]改成()後,不是產生一個tuple,而是產生一個generator>>> g
第二種方式:在函數中使用yield關鍵字,函數就變成了一個generator。
函數裡有了yield後,執行到yield就會停住,當需要再往下算時才會再往下算。所以生成器函數連有無限迴圈也沒關係,它要算多少就算多少,不需要就不往下算。
def fib():
a, b = 0, 1
while True:
yield a
yield a
時#f = fib()
print f, next(f), next(f), next(f)
#
如上例,第一次輸出f,它就是一個generator,之後每次next,它都會執行到yield a。
當然其實平常很少用到next(),我們直接用for迴圈就可以遍歷一個generator,其實for迴圈的內部實作就是不停呼叫next()。
生成器可以避免不必要的運算,帶來效能上的提升;而且會節省空間,可以實現無限循環(無限大的)的資料結構。
產生器語法
產生器表達式: 通列表解析語法,只不過把列表解析的[]換成()
生成器表達式能做的事情列表解析基本上都能處理,只不過在需要處理的序列比較大時,列表解析比較費內存。
產生器函數: 函數中如果出現了yield關鍵字,那麼函數就不再是普通函數,而是生成函數。
在Python中,yield就是這樣的一個生成器。
yield 生成器的運作機制:
當你問生成器要一個數字時,生成器會執行,直至出現 yield 語句,產生器把 yield 的參數給你,之後產生器就不會往下繼續運作。 當你問他要下一個數字時,他會從上次的狀態。開始運行,直至出現yield語句,把參數給你,之後停下。如此反覆 直至退出函數。
yield的使用:
在Python中,當你定義一個函數,使用了yield關鍵字時,這個函數就是一個生成器,它的執行會和其他普通的函數有很多不同,函數回傳的是一個對象,而不是你平常所用return語句那樣,能得到結果值。如果想要取得值,那就得呼叫next()函數
下面以斐波拉契為例:
#coding:utf8 def fib(max): #10 n, a, b = 0, 0, 1 while n < max: #n<10 #print(b) yield b a, b = b, a + b n += 1 return f = fib(10) for i in f: print f
從上面的運作機制描述中,可以獲知,程式執行到yield這行時,就不會繼續往下執行。而是傳回一個包含目前函數所有參數的狀態的iterator物件。目的是為了第二次被呼叫時,能夠存取函數所有的參數值都是第一次造訪時的值,而不是重新賦值。
程式第一次呼叫時:
def fib(max): #10 n, a, b = 0, 0, 1 while n < max: #n<10 #print(b) yield b #这时a,b值分别为0,1,当然,程序也在执行到这时,返回 a, b = b, a + b
程序第二次调用时:
从前面可知,第一次调用时,a,b=0,0,那么,我们第二次调用时(其实就是调用第一次返回的iterator对象的next()方法),程序跳到yield语句处,
执行a,b = b, a+b语句,此时值变为:a,b = 0, (0+1) => a,b = 0, 1
程序继续while循环,当然,再一次碰到了yield a 语句,也是像第一次那样,保存函数所有参数的状态,返回一个包含这些参数状态的iterator对象。
等待第三次的调用....
通过上面的分析,可以一次类推的展示了yield的详细运行过程了!
通过使用生成器的语法,可以免去写迭代器类的繁琐代码,如,上面的例子使用迭代类来实现,代码如下:
#coding:UTF8 class Fib: def __init__(self, max): self.max = max print self.max def __iter__(self): self.a = 0 self.b = 1 self.n = 0 return self def next(self): fib = self.n if fib >= self.max: raise StopIteration self.a, self.b = self.b, self.a + self.b self.n += 1 return self.a f = Fib(10) for i in f: print i
yield 与 return
在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;
如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
如果在return后返回一个值,会直接报错,生成器没有办法使用return来返回值。
生成器支持的方法(借鉴别人的例子,感觉蛮好的)
close(...) | close() -> raise GeneratorExit inside generator. | | next(...) | x.next() -> the next value, or raise StopIteration | | send(...) | send(arg) -> send 'arg' into generator, | return next yielded value or raise StopIteration. | | throw(...) | throw(typ[,val[,tb]]) -> raise exception in generator, | return next yielded value or raise StopIteration.
close()
手动关闭生成器函数,后面的调用会直接返回StopIteration异常。
#coding:UTF8 def fib(): yield 1 yield 2 yield 3 f = fib() print f.next() f.close() print f.next()
send()
生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这是生成器函数最难理解的地方,也是最重要的地方,
def gen(): value=0 while True: receive=yield value if receive=='e': break value = 'got: %s' % receive g=gen() print(g.send(None)) print(g.send('aaa')) print(g.send(3)) print(g.send('e'))
执行流程:
通过g.send(None)或者next(g)可以启动生成器函数,并执行到第一个yield语句结束的位置。此时,执行完了yield语句,但是没有给receive赋值。yield value会输出初始值0注意:在启动生成器函数时只能send(None),如果试图输入其它的值都会得到错误提示信息。
通过g.send(‘aaa’),会传入aaa,并赋值给receive,然后计算出value的值,并回到while头部,执行yield value语句有停止。此时yield value会输出”got: aaa”,然后挂起。
通过g.send(3),会重复第2步,最后输出结果为”got: 3″
当我们g.send(‘e’)时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。
最后的执行结果如下:
0 got: aaa got: 3 Traceback (most recent call last): File "1.py", line 15, in <module> print(g.send('e')) StopIteration
throw()
用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。
throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。
def gen(): while True: try: yield 'normal value' yield 'normal value 2' print('here') except ValueError: print('we got ValueError here') except TypeError: break g=gen() print(next(g)) print(g.throw(ValueError)) print(next(g)) print(g.throw(TypeError))
执行流程:
print(next(g)):会输出normal value,并停留在yield ‘normal value 2’之前。
由于执行了g.throw(ValueError),所以会跳过所有后续的try语句,也就是说yield ‘normal value 2’不会被执行,然后进入到except语句,打印出we got ValueError here。然后再次进入到while语句部分,消耗一个yield,所以会输出normal value。
print(next(g)),会执行yield ‘normal value 2’语句,并停留在执行完该语句后的位置。
g.throw(TypeError):会跳出try语句,从而print(‘here’)不会被执行,然后执行break语句,跳出while循环,然后到达程序结尾,所以跑出StopIteration异常。
以上是Python生成器的介紹與使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。
