目錄
基礎:
什麼是進程(process)?
什麼是執行緒(thread)?
執行緒與行程的差異:
關係:
什麼是上下文切換?
單執行緒:
GIL 全局解释器锁
线程锁
RLock 递归锁
 多线程的另一种写法:
多进程(了解即可):
首頁 後端開發 Python教學 什麼是行程(process)?什麼是執行緒?

什麼是行程(process)?什麼是執行緒?

Jul 24, 2017 pm 04:58 PM
python 筆記 執行緒

基礎:

什麼是進程(process)?

每一個程式的記憶體是獨立的,例如:world不能存取QQ。 

程式:QQ是以一個整體的形式暴露給作業系統管理,裡麵包含了各種資源的呼叫(記憶體管理、網路介面呼叫等)。啟動一個QQ,也就是啟動了一個行程。

什麼是執行緒(thread)?

執行緒是作業系統能夠進行運算調度的最小單位。 執行緒包含在流程之中,是進程中的實際運作單位。

一個行程中最少有一個執行緒

一個執行緒時指 行程中一個單一順序的控制流。

一個進程中科院並發多個線程,每個線程並行執行不同的任務,線程與線程之間是相互獨立的。

執行緒與行程的差異:

行程:對各種資源管理的集合

#執行緒:作業系統最小的調度單位,是一串指令的集合

關係:

進程中第一個線程時主線程,主線程創建其他線程,其他線程也可以創建線程,線程之間是平等的;

進程有父進程、子進程,獨立的記憶體空間,唯一的進程標識符,pid;

什麼是上下文切換?

上下文切換,也稱為做行程切換或任務切換,是指cpu從一個行程或執行緒切換到另一個行程或執行緒。舉例說明,如下:

a.開啟QQ和微信,先聊QQ,然後切換到微信進行聊天,再切換到QQ,這個操作就叫做上下文切換。

b.同時開啟多個應用,電腦cpu配置是4核,多個應用之間進行切換時,沒有卡頓現像也完全感受不到cpu在進行任務切換,因為cpu處理很快,所以應用程式之間切換沒有卡頓現象;

 

單執行緒:

import timeimport requestsdef get_res():
    urls = ['','','','']
    start = time.time()for url in urls:print(url)
        resp = requests.get(url)print(resp)
    end = time.time()print('单线程运行时间:', end - start)
登入後複製

執行結果:

##
http://www.baidu.com<Response [200]>https://www.taobao.com/
<Response [200]>https://www.jd.com/
<Response [200]>http://www.meilishuo.com/
<Response [200]>单线程运行时间: 1.0470597743988037
登入後複製
解釋:

a. cpu順序被要求

b.除非cpu從一個url取得的回應,否則不會去請求下一個url

# c. 網路請求會花費較長的時間,所以cpu在等待網路請求的返回時間內一直處於閒置狀態

# 多執行緒:

import timeimport threadingdef run(count):#每次执行该方法,需要休息2stime.sleep(2)print(count)#开始创建多线程start = time.time()for i in range(5):#创建线程,指定运行哪个函数,也就是指定哪个函数运行需要创建多线程#target=要运行的函数名# args=函数运行传入的参数,run方法需要传入count,把创建th = threading.Thread(target=run, args=(i, ))#启动线程    th.start()#多线程创建完毕且运行结束end = time.time()print('运行时间:', end - start)
登入後複製
運行結果:

运行时间: 0.0
104
2
3
登入後複製

解釋:

a. 列印出來的運行時間統計的不是多執行緒的運行時間,因為沒有執行run都要等待2s,所以多執行緒的運行時間至少為2s,

那麼列印的結果是什麼?

  列印的運行時間是主線程的運行時間,因為在運行python檔案時,如果不啟動多線程,至少有一個線程在運行

#  線程與線程之間是相互獨立的,最開始運行的是主線程,當運行到threading.Thread時,創建一個線程,創建的線程執行循環方,主線程執行其他操作

#  主執行緒不等待其他執行緒結束後再結束

b. 列印的count資料是無序的,因為多執行緒執行run方法,並不是第一個請求結束後才進行下一個請求的,而是創建一個線程後執行run方法,接著創建另一個線程,哪個線程執行完畢就會打印出結果

c.總共創建了5個執行緒

 

若想統計多執行緒總共的執行時間,也就是從開始創建執行緒到執行緒結束運行之間的時間(不需要考慮執行緒之間怎麼運行的),操作如下:

join()等待(等待執行緒結束)

import timeimport threadingdef run(count):#每次执行该方法,需要休息2stime.sleep(2)print(count)#开始创建多线程start = time.time()#存放创建的所有线程threads_list = []for i in range(5):#创建线程,指定运行哪个函数,也就是指定哪个函数运行需要创建多线程#target=要运行的函数名# args=函数运行传入的参数,run方法需要传入count,把创建th = threading.Thread(target=run, args=(i, ))#启动线程    th.start()#把启动的每一个线程添加到线程组内    threads_list.append(th)for t in threads_list:#主线程循环等待每个子线程运行完毕, t代表每个子线程t.join()  #等待线程结束#多线程创建完毕且运行结束end = time.time()print('运行时间:', end - start)
登入後複製
執行結果:

01
2
4
3运行时间: 2.0011146068573
登入後複製
 守護線程

守護線程:主線程運行結束後,不管守護線程執行是否結束,都會結束,舉例說明:

例如皇帝有很多僕人,當皇帝死了之後,那麼多僕人就得陪葬。

只要非守護線程結束了,不管守護線程結束沒結束,程式都結束

import threadingimport timedef run(count):
    time.sleep(2)print(count)for i in range(5):#循环创建线程,总共5个线程t = threading.Thread(target=run, args=(i, ))#设置守护线程,新创建的这些线程都是 主线程的 守护线程, 主线程创建一个线程后 就运行结束了    t.setDaemon(True)#启动线程,守护线程设置必须在start前面    t.start()print('over')
登入後複製

GIL 全局解释器锁

例如 4核机器上 
Python创建4线程,四个线程均匀分到多核上,但是同时只能一核在处理数据。 
python调用操作系统、C语音的原生接口,在出口做了设置。全局解释器锁,保证数据统一 
所以有人说python的线程是假线程。 
在修改数据的时候,为了防止数据改乱了,所以多线程就变成串行处理,但是以为是python在处理,实际上是调用了操作系统的C语音的线程接口,所以中间的过程,python控制不了了,只知道结果。在这种情况下,设置的方式是出口控制,虽然四个线程,但是同一时间只有一个线程在工作。 
  
所以这算是python的一个缺陷,但是也不能说是python的缺陷,是Cpython的缺陷。因为Cpython是C语音写的,以后python的未来是PYPY。 

线程锁

线程锁,又叫互斥锁

线程之间沟通:保证同一时间只有一个线程修改数据

python2.x 中需要加锁,Python3.x中加不加锁都一样,因为解释器做了优化

import threadingfrom threading import Lock#创建lock对象num = 0
lock = Lock()   #申请一把锁,创建锁的对象def run2():global num
    lock.acquire()      #修改数据前 加锁num += 1lock.release()      #修改后释放解锁lis = []for i in range(5):#创建线程t = threading.Thread(target=run2)#启动线程    t.start()#将启动的线程添加到线程组内    lis.append(t)for t in lis:#等待线程运行结束    t.join()#num的值为5,执行多次后,会出现不一样的值print('over', num)
登入後複製

RLock 递归锁

大锁中还有小锁、递归锁,解锁时就混了,所以用递归锁,Rlock()

import threading,timedef run1():print("grab the first part data")
    lock.acquire()global num
    num +=1lock.release()return numdef run2():print("grab the second part data")
    lock.acquire()global  num2
    num2+=1lock.release()return num2def run3():
    lock.acquire()
    res = run1()print('--------between run1 and run2-----')
    res2 = run2()
    lock.release()print(res,res2)if __name__ == '__main__':

    num,num2 = 0,0
    lock = threading.RLock()  # 声明递归锁# lock = threading.Lock() # 用互斥锁,会锁死了,弄混锁情况,可以试一下for i in range(10):
        t = threading.Thread(target=run3)
        t.start()while threading.active_count() != 1:print(threading.active_count())else:print('----all threads done---')print(num,num2)
登入後複製

 多线程的另一种写法:

import threadingimport timeclass MyThread(threading.Thread):def __init__(self, num):
        threading.Thread.__init__(self)
        self.num = numdef run(self):  # 定义每个线程要运行的函数print("running on number:%s" % self.num)
        time.sleep(3)if __name__ == '__main__':
    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start()
登入後複製

多进程(了解即可):

python里面的多线程,是不能利用多核cpu的,如果想利用多核cpu的话,就得使用多进程

多进程适用CPU密集型任务

多线程适用io密集型任务

from multiprocessing import Processdef f(name):
    time.sleep(2)print('hello', name)if __name__ == '__main__':for i in range(10):
        p = Process(target=f, args=('niu',))
        p.start()
登入後複製

以上是什麼是行程(process)?什麼是執行緒?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1425
52
Laravel 教程
1325
25
PHP教程
1272
29
C# 教程
1252
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles