首頁 後端開發 Python教學 分享Python如何利用plotly繪製資料圖表的案例(圖文)

分享Python如何利用plotly繪製資料圖表的案例(圖文)

Jul 18, 2017 am 11:18 AM
plotly python 使用

本篇文章主要介紹了Python使用plotly繪製資料圖表的方法,實例分析了plotly繪製的技巧,具有一定的參考價值,有興趣的小夥伴們可以參考一下

##導語:使用python-plotly 模組來進行壓測資料的繪製,並且產生靜態html 頁面結果展示。

不少小夥伴在開發過程中都有對模組進行壓測的經歷,壓測結束後大家往往喜歡使用Excel處理壓測資料並繪製資料視覺化視圖,但這樣不能很方便的使用web頁面進行資料展示。本文將介紹使用python-plotly模組來進行壓測資料的繪製,並且產生靜態html頁面方便結果展示。

Plotly簡介

Plotly是一款使用JavaScript開發的製圖工具,提供了與主流資料分析語言互動的API(如: Python, R, MATLAB)。大家可以到官網 https://plot.ly/ 了解更多詳細的資訊。 Plotly能夠繪製具有使用者互動功能的精美圖表。

Python-Plotly 安裝

本文檔主要是介紹使用plotly的Python API來進行幾種簡單圖表的繪製,更多Plotly的用法請參考https://plot.ly/python/

Python-Plotly可以使用pip安裝,並且最好在Python2.7版本及以上安裝使用,如果使用Python2.6版本,請自行安裝Python2.7和對應的pip。

Plotly繪圖實例

# line-plots

繪圖效果:

產生的html頁面在右上角提供了豐富的互動工具。

程式碼:


def line_plots(name):
  '''
  绘制普通线图
  '''
  #数据,x为横坐标,y,z为纵坐标的两项指标,三个array长度相同
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'z':[12,9,0,0,3,25,8,17,22,5]}
  data_g = []
  #分别插入 y, z
  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    name = 'y' 
  )
  data_g.append(tr_x)
  tr_z = Scatter(
    x = dataset['x'],
    y = dataset['z'],
    name = 'z' 
  )
  data_g.append(tr_z)
  #设置layout,指定图表title,x轴和y轴名称
  layout = Layout(title="line plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  #将layout设置到图表
  fig = Figure(data=data_g, layout=layout)
  #绘图,输出路径为name参数指定
  pltoff.plot(fig, filename=name)
登入後複製

scatter-plots

繪圖效果:

程式碼:


#

def scatter_plots(name):
  '''
  绘制散点图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'text':['5_txt','4_txt','1_txt','3_txt','11_txt','2_txt','6_txt','7_txt','19_txt','20_txt']}

  data_g = []

  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    text = dataset['text'],
    textposition='top center',
    mode='markers+text',
    name = 'y' 
  )
  data_g.append(tr_x)

  layout = Layout(title="scatter plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)
登入後複製

bar-charts

繪圖效果:

程式碼:


#

def bar_charts(name):
  '''
  绘制柱状图
  '''
  dataset = {'x':['Windows', 'Linux', 'Unix', 'MacOS'],
        'y1':[45, 26, 37, 13],
        'y2':[19, 27, 33, 21]}
  data_g = []
  tr_y1 = Bar(
    x = dataset['x'],
    y = dataset['y1'],
    name = 'v1'
  )
  data_g.append(tr_y1)

  tr_y2 = Bar(
    x = dataset['x'],
    y = dataset['y2'],
    name = 'v2'
  )
  data_g.append(tr_y2)
  layout = Layout(title="bar charts", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)
登入後複製

pie-charts


繪圖效果:

程式碼:

####
def pie_charts(name):
  '''
  绘制饼图
  '''
  dataset = {'labels':['Windows', 'Linux', 'Unix', 'MacOS', 'Android', 'iOS'],
        'values':[280, 25, 10, 100, 250, 270]} 
  data_g = []
  tr_p = Pie(
    labels = dataset['labels'],
    values = dataset['values']
  )
  data_g.append(tr_p)
  layout = Layout(title="pie charts")
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)
登入後複製
######filled-area-plots########################################################## ###本範例是繪製具有填滿效果的堆疊線圖,適合分析具有堆疊百分比屬性的資料######繪圖效果:###############程式碼:# ###########
def filled_area_plots(name):
  '''
  绘制堆叠填充的线图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y1':[5,4,1,3,11,2,6,7,19,20],
        'y2':[12,9,0,0,3,25,8,17,22,5],
        'y3':[13,22,46,1,15,4,18,11,17,20]}

  #计算y1,y2,y3的堆叠占比
  dataset['y1_stack'] = dataset['y1']
  dataset['y2_stack'] = [y1+y2 for y1, y2 in zip(dataset['y1'], dataset['y2'])]
  dataset['y3_stack'] = [y1+y2+y3 for y1, y2, y3 in zip(dataset['y1'], dataset['y2'], dataset['y3'])]

  dataset['y1_text'] = ['%s(%s%%)'%(y1, y1*100/y3_s) for y1, y3_s in zip(dataset['y1'], dataset['y3_stack'])]
  dataset['y2_text'] = ['%s(%s%%)'%(y2, y2*100/y3_s) for y2, y3_s in zip(dataset['y2'], dataset['y3_stack'])]
  dataset['y3_text'] = ['%s(%s%%)'%(y3, y3*100/y3_s) for y3, y3_s in zip(dataset['y3'], dataset['y3_stack'])]

  data_g = []
  tr_1 = Scatter(
    x = dataset['x'],
    y = dataset['y1_stack'],
    text = dataset['y1_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y1', 
    fill = 'tozeroy' #填充方式: 到x轴
  )
  data_g.append(tr_1)

  tr_2 = Scatter(
    x = dataset['x'],
    y = dataset['y2_stack'],
    text = dataset['y2_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y2', 
    fill = 'tonexty' #填充方式:到下方的另一条线
  )
  data_g.append(tr_2)

  tr_3 = Scatter(
    x = dataset['x'],
    y = dataset['y3_stack'],
    text = dataset['y3_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y3',
    fill = 'tonexty'
  )
  data_g.append(tr_3)

  layout = Layout(title="field area plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)
登入後複製
######小結##########本文介紹了利用python-plotly繪製資料圖的方法,實例中線圖(line plots)、散點圖(scatter plots)、長條圖(bar charts)、餅圖(pie charts)以及填充堆疊線圖(filled area plots)這五種典型的圖表基本上涵蓋了大部分類型的測試數據,各位小夥伴可以加以變形繪製出更多的漂亮圖示。 ###

以上是分享Python如何利用plotly繪製資料圖表的案例(圖文)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1424
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles