首頁 後端開發 Python教學 python中Matplotlib實作繪製3D圖方法介紹

python中Matplotlib實作繪製3D圖方法介紹

Sep 05, 2017 am 11:21 AM
matplotlib python 方法

本篇文章主要介紹了python中Matplotlib實作繪製3D圖的範例程式碼,具有一定的參考價值,有興趣的可以了解一下

Matplotlib 也可以繪製3D 影像,與二維影像不同的是,繪製三維影像主要透過mplot3d 模組實現。但是,使用 Matplotlib 繪製三維影像實際上是在二維畫布上展示,所以一般繪製三維影像時,同樣需要載入 pyplot 模組。
mplot3d 模組下主要包含4 個大類,分別是:

  • mpl_toolkits.mplot3d.axes3d()

  • #mpl_toolkits.mplot3d .axis3d()

  • mpl_toolkits.mplot3d.art3d()

  • mpl_toolkits.mplot3d.proj3d()






##其中,axes3d() 以下主要包含了各種實作繪圖的類別和方法。 axis3d() 主要是包含了和座標軸相關的類別和方法。 art3d() 包含了一些可將 2D 影像轉換並用於 3D 繪製的類別和方法。 proj3d() 中包含一些零碎的類別和方法,例如計算三維向量長度等。

一般情況下,我們用到最多的就是mpl_toolkits.mplot3d.axes3d() 中的mpl_toolkits.mplot3d.axes3d.Axes3D() 類,而Axes3D() 下面又存在繪製不同類型3D圖的方法。你可以透過下面的方式導入 Axes3D()。

from mpl_toolkits.mplot3d.axes3d import Axes3D或from mpl_toolkits.mplot3d import Axes3D

#三維散點圖

## numpy 隨機產生一組資料。


import numpy as np

# x, y, z 均为 0 到 1 之间的 100 个随机数
x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)
z = np.random.normal(0, 1, 100)
登入後複製
接下來,開始繪圖。第一步是載入 2D, 3D 繪圖模組。

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
登入後複製

第二步,使用 Axes3D() 建立 3D 圖形物件。

fig = plt.figure()
ax = Axes3D(fig)
登入後複製
最後,呼叫散點圖繪製方法繪圖並顯示出來。

ax.scatter(x, y, z)
plt.show()
登入後複製

三維線型圖

線形圖和散佈圖相似,需要傳入x, y, z 三個座標的數值。詳細的程式碼如下。

# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)
y = np.sin(x)
z = np.cos(x)

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 绘制线型图
ax.plot(x, y, z)

# 显示图
plt.show()
登入後複製

三維柱狀圖

#繪製完線型圖,我們繼續嘗試繪製三維柱狀圖,其實它的繪製步驟和上面同樣非常相似。

# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据并绘图
x = [0, 1, 2, 3, 4, 5, 6]
for i in x:
  y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  z = abs(np.random.normal(1, 10, 10))
  ax.bar(y, z, i, zdir='y', color=['r', 'g', 'b', 'y'])
plt.show()
登入後複製

三維圖曲面圖

###接下來需要繪製的三維曲面圖要麻煩一些,我們需要對資料進行矩陣處理。其實和畫二維等高線圖很相似,只是多增加了一個維度。 ############
# 载入模块
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(X ** 2 + Y ** 2)

# 绘制曲面图,并使用 cmap 着色
ax.plot_surface(X, Y, Z, cmap=plt.cm.winter)

plt.show()
登入後複製
###cmap=plt.cm.winter 表示採用了 winter 配色方案,也就是下圖的漸層色。 #########混合圖繪製#########混合圖就是將兩種不同類型的圖繪製在一張圖裡。繪製混合圖一般有前提條件,那就是兩種不同類型圖的範圍大致相同,否則將會出現嚴重的比例不協調,而使得混合圖失去意義。 ############
# -*- coding: utf-8 -*
# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据并绘制图 1
x1 = np.linspace(-3 * np.pi, 3 * np.pi, 500)
y1 = np.sin(x1)
ax.plot(x1, y1, zs=0, c='red')

# 生成数据并绘制图 2
x2 = np.random.normal(0, 1, 100)
y2 = np.random.normal(0, 1, 100)
z2 = np.random.normal(0, 1, 100)
ax.scatter(x2, y2, z2)

# 显示图
plt.show()
登入後複製
######子圖繪製################
# -*- coding: utf-8 -*
# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 创建 1 张画布
fig = plt.figure()

#===============

# 向画布添加子图 1 
ax1 = fig.add_subplot(1, 2, 1, projection='3d')

# 生成子图 1 数据
x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)
y = np.sin(x)
z = np.cos(x)

# 绘制第 1 张图
ax1.plot(x, y, z)

#===============

# 向画布添加子图 2
ax2 = fig.add_subplot(1, 2, 2, projection='3d')

# 生成子图 2 数据
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(X ** 2 + Y ** 2)

# 绘制第 2 张图
ax2.plot_surface(X, Y, Z, cmap=plt.cm.winter)

# 显示图
plt.show()
登入後複製
###我們可以來看這些程式碼。由於兩張子圖是繪製在 1 張畫布上面的,所以這裡需要事先建立 1 張畫布。然後透過.add_subplot()加入子圖,子圖序號和二維繪圖相似,只是注意 3D 繪圖時要新增projection='3d'參數。 ###

以上是python中Matplotlib實作繪製3D圖方法介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

See all articles