最近要對一系列數據做同比比較,需要用到numpy和pandas來計算,下面這篇文章主要給大家介紹了關於python學習教程之Numpy和Pandas使用的相關資料,文中通過示例代碼介紹的非常詳細,需要的朋友可以參考借鏡。
前言
本文主要給大家介紹了關於python中Numpy和Pandas使用的相關資料,分享出來供大家參考學習,下面話不多說了,來一起看看詳細的介紹吧。
它們是什麼?
NumPy是Python語言的擴充程式庫。支援高級大量的維度數組與矩陣運算,此外也針對數組運算提供大量的數學函數庫。
Pandas是基於NumPy 的一種工具,該工具是為了解決資料分析任務而創建的。 Pandas 納入了大量函式庫和一些標準的資料模型,提供了有效率地操作大型資料集所需的工具。 Pandas提供了大量能使我們快速且方便地處理資料的函數和方法。
List、Numpy與Pandas
Numpy與List
相同之處:
都可以用下標都可以用下標(例如a[1:3]
都可以使用for循環進行遍歷
不同之處:
Numpy之中每個元素類型必須相同;而List
相同之處:
訪問元素一樣,可以使用下標,也可以使用切片訪問
可以使用For回曆mean、std、sum、min、max等
可以進行向量運算
用C實現,速度更快
不同之處:Pandas擁有Numpy一些沒有的方法,例如describe函數。其主要區別是:Numpy就像增強版的List,而Pandas就像列表和字典的合集,Pandas有索引。
Numpy使用
import numpy as np #创建Numpy p1 = np.array([1, 2, 3]) print p1 print p1.dtype
[1 2 3] int64
#求平均值 print p1.mean()
2.0
#求标准差 print p1.std()
0.816496580928
#求和、求最大值、求最小值 print p1.sum() print p1.max() print p1.min()
2、向量運算
6 3 1
ee
#求最大值所在位置 print p1.argmax()
2
p1 = np.array([1, 2, 3]) p2 = np.array([2, 5, 7])
#向量相加,各个元素相加 print p1 + p2
[ 3 7 10]
#向量乘以1个常数 print p1 * 2
[2 4 6]
#向量相减 print p1 - p2
[-1 -3 -4]
#向量相乘,各个元素之间做运算 print p1 * p2
[ 2 10 21]
#向量与一个常数比较 print p1 > 2
[False False True]
a = np.array([1, 2, 3, 4, 5]) print a
+=:它是原地計算,不會創建一個新的數組,在原始數組中更改元素
5、Numpy中的切片與List的切片
[1 2 3 4 5]
p1 = np.array([[1, 2, 3], [7, 8, 9], [2, 4, 5]]) #获取其中一维数组 print p1[0]
[1 2 3]
#获取其中一个元素,注意它可以是p1[0, 1],也可以p1[0][1] print p1[0, 1] print p1[0][1]
2 2
#求和是求所有元素的和 print p1.sum()
41 [10 14 17]
但,当设置axis参数时,当设置为0时,是计算每一列的结果,然后返回一个一维数组;若是设置为1时,则是计算每一行的结果,然后返回一维数组。对于二维数组,Numpy中很多函数都可以设置axis参数。
#获取每一列的结果 print p1.sum(axis=0)
[10 14 17]
#获取每一行的结果 print p1.sum(axis=1)
[ 6 24 11]
#mean函数也可以设置axis print p1.mean(axis=0)
[ 3.33333333 4.66666667 5.66666667]
Pandas使用
Pandas有两种结构,分别是Series和DataFrame。其中Series拥有Numpy的所有功能,可以认为是简单的一维数组;而DataFrame是将多个Series按列合并而成的二维数据结构,每一列单独取出来是一个Series。
咱们主要梳理下Numpy没有的功能:
1、简单基本使用
import pandas as pd pd1 = pd.Series([1, 2, 3]) print pd1
0 1 1 2 2 3 dtype: int64
#也可以求和和标准偏差 print pd1.sum() print pd1.std()
6 1.0
2、索引
(1)Series中的索引
p1 = pd.Series( [1, 2, 3], index = ['a', 'b', 'c'] ) print p1
a 1 b 2 c 3 dtype: int64
print p1['a']
(2)DataFrame数组
p1 = pd.DataFrame({ 'name': ['Jack', 'Lucy', 'Coke'], 'age': [18, 19, 21] }) print p1
age name 0 18 Jack 1 19 Lucy 2 21 Coke
#获取name一列 print p1['name']
0 Jack 1 Lucy 2 Coke Name: name, dtype: object
#获取姓名的第一个 print p1['name'][0]
Jack
#使用p1[0]不能获取第一行,但是可以使用iloc print p1.iloc[0]
age 18 name Jack Name: 0, dtype: object
总结:
获取一列使用p1[‘name']这种索引
获取一行使用p1.iloc[0]
3、apply使用
apply可以操作Pandas里面的元素,当库里面没用对应的方法时,可以通过apply来进行封装
def func(value): return value * 3 pd1 = pd.Series([1, 2, 5])
print pd1.apply(func)
0 3 1 6 2 15 dtype: int64
同样可以在DataFrame上使用:
pd2 = pd.DataFrame({ 'name': ['Jack', 'Lucy', 'Coke'], 'age': [18, 19, 21] }) print pd2.apply(func)
age name 0 54 JackJackJack 1 57 LucyLucyLucy 2 63 CokeCokeCoke
4、axis参数
Pandas设置axis时,与Numpy有点区别:
当设置axis为'columns'时,是计算每一行的值
当设置axis为'index'时,是计算每一列的值
pd2 = pd.DataFrame({ 'weight': [120, 130, 150], 'age': [18, 19, 21] })
0 138 1 149 2 171 dtype: int64
#计算每一行的值 print pd2.sum(axis='columns')
0 138 1 149 2 171 dtype: int64
#计算每一列的值 print pd2.sum(axis='index')
age 58 weight 400 dtype: int64
5、分组
pd2 = pd.DataFrame({ 'name': ['Jack', 'Lucy', 'Coke', 'Pol', 'Tude'], 'age': [18, 19, 21, 21, 19] }) #以年龄分组 print pd2.groupby('age').groups
{18: Int64Index([0], dtype='int64'), 19: Int64Index([1, 4], dtype='int64'), 21: Int64Index([2, 3], dtype='int64')}
6、向量运算
需要注意的是,索引数组相加时,对应的索引相加
pd1 = pd.Series( [1, 2, 3], index = ['a', 'b', 'c'] ) pd2 = pd.Series( [1, 2, 3], index = ['a', 'c', 'd'] )
print pd1 + pd2
a 2.0 b NaN c 5.0 d NaN dtype: float64
出现了NAN值,如果我们期望NAN不出现,如何处理?使用add函数,并设置fill_value参数
print pd1.add(pd2, fill_value=0)
a 2.0 b 2.0 c 5.0 d 3.0 dtype: float64
同样,它可以应用在Pandas的dataFrame中,只是需要注意列与行都要对应起来。
总结
这一周学习了优达学城上分析基础的课程,使用的是Numpy与Pandas。对于Numpy,以前在Tensorflow中用过,但是很不明白,这次学习之后,才知道那么简单,算是有一定的收获。
以上是python之Numpy與Pandas的使用介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!