首頁 後端開發 Python教學 總結有關python八大排序演算法(下)

總結有關python八大排序演算法(下)

Sep 16, 2017 am 10:14 AM
python 排序

這篇文章主要為大家詳細介紹了python實現八大排序演算法的第二篇,具有一定的參考價值,有興趣的小夥伴們可以參考一下

本文接上一篇部落格python實現的八大排序演算法part1,將繼續使用python實作八大排序演算法中的剩餘四個:快速排序、堆排序、歸併排序、基數排序

5、快速排序





總結有關python八大排序演算法(下)





快速排序是通常被認為在相同數量級(O(nlog2n))的排序方法中平均表現最好的。

演算法思想:

已知一組無序資料a[1]、a[2]、……a[n],需將其依升序排列。首先任取資料a[x]為基準。比較a[x]與其它資料並排序,使a[x]排在資料的第k位,並且使a[1]~a[k-1]中的每一個資料a[x],然後採用分治的策略分別對a[1]~a[k-1]和a[k+1]~a [n]兩組資料進行快速排序。

優點:極快,資料移動少;

缺點:不穩定。


python程式碼實作:

def quick_sort(list):
  little = []
  pivotList = []
  large = []
  # 递归出口
  if len(list) <= 1:
    return list
  else:
    # 将第一个值做为基准
    pivot = list[0]
    for i in list:
      # 将比基准小的值放到less数列
      if i < pivot:
        little.append(i)
      # 将比基准大的值放到more数列
      elif i > pivot:
        large.append(i)
      # 将和基准相同的值保存在基准数列
      else:
        pivotList.append(i)
    # 对less数列和more数列继续进行快速排序
    little = quick_sort(little)
    large = quick_sort(large)
    return little + pivotList + large
登入後複製
總結有關python八大排序演算法(下)下面這段程式碼出自《Python cookbook 第二版的三行實作python快速排序。

#!/usr/bin/env python
#coding:utf-8
&#39;&#39;&#39;
file:python-8sort.py
date:9/1/17 9:03 AM
author:lockey
email:lockey@123.com
desc:python实现八大排序算法
&#39;&#39;&#39;
lst = [65,568,9,23,4,34,65,8,6,9]
def quick_sort(list):
  if len(list) <= 1:
    return list
  else:
    pivot = list[0]
    return quick_sort([x for x in list[1:] if x < pivot]) + \
        [pivot] + \
        quick_sort([x for x in list[1:] if x >= pivot])
登入後複製

執行測試結果截圖:

#好吧,還有更精簡的語法糖,一行完事:

quick_sort = lambda xs : ( (len(xs) <= 1 and [xs]) or [ quick_sort( [x for x in xs[1:] if x < xs[0 ]] ) + [xs[0]] + quick_sort( [x for x in xs[1:] if x >= xs[0]] ) ] )[0]

#若初始序列依關鍵碼有序或基本有序時,快排序反而蛻化為冒泡排序。為改進之,通常以「三者取中法」來選取基準記錄,即將排序區間的兩個端點與中點三個記錄關鍵碼居中的調整為支點記錄。快速排序是一個不穩定的排序方法。 ######在改進演算法中,我們將只對長度大於k的子序列遞歸調用快速排序,讓原序列基本有序,然後再對整個基本有序序列用插入排序演算法排序。實踐證明,改進後的演算法時間複雜度有所降低,且當k取值為 8 左右時,改進演算法的性能最佳。 #########6、堆排序(Heap Sort)#########堆排序是一種樹狀選擇排序,是直接選擇排序的有效改進。 #########優點: 效率高###缺點:不穩定######堆的定義下:具有n個元素的序列(h1,h2,...,hn),當且僅當滿足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)時稱為堆。這裡只討論滿足前者條件的堆。由堆的定義可以看出,堆頂元素(即第一個元素)必為最大項(大頂堆)。完全二 叉樹可以很直觀地表示堆的結構。堆頂為根,其它為左子樹、右子樹。 #########演算法思想:######初始時把要排序的數的序列看作是一棵順序儲存的二元樹,調整它們的儲存序,使之成為一個堆,這時堆的根節點的數最大。然後將根節點與堆的最後一個節點交換。然後對前面(n-1)個數重新調整使之成為堆。依此類推,直到只有兩個節點的堆,並對 它們作交換,最後得到有n個節點的有序序列。從演算法描述來看,堆排序需要兩個過程,一是建立堆,二是堆頂與堆的最後一個元素交換位置。所以堆排序有兩個函數組成。一是建堆的滲透函數,二是反覆呼叫滲透函數實現排序的函數。 #########python程式碼實作:############
# -*- coding: UTF-8 -*-
&#39;&#39;&#39;
Created on 2017年9月2日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
&#39;&#39;&#39;
lst = [65,568,9,23,4,34,65,8,6,9]
def adjust_heap(lists, i, size):# 调整堆
  lchild = 2 * i + 1;rchild = 2 * i + 2
  max = i
  if i < size / 2:
    if lchild < size and lists[lchild] > lists[max]:
      max = lchild
    if rchild < size and lists[rchild] > lists[max]:
      max = rchild
    if max != i:
      lists[max], lists[i] = lists[i], lists[max]
      adjust_heap(lists, max, size)
def build_heap(lists, size):# 创建堆
  halfsize = int(size/2)
  for i in range(0, halfsize)[::-1]:
    adjust_heap(lists, i, size)
def heap_sort(lists):# 堆排序
  size = len(lists)
  build_heap(lists, size)
  for i in range(0, size)[::-1]:
    lists[0], lists[i] = lists[i], lists[0]
    adjust_heap(lists, 0, i)
    print(lists)
登入後複製
###結果範例:################## 7.歸併排序#########演算法思想:######歸併(Merge)排序是建立在歸併操作上的一種有效的排序演算法,該演算法是採用分治法的一個非常典型的應用。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱為二路歸併。 ######歸併過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]複製到r[k]中,並令i和k分別加上1;否則將第二個有序表中的元素a[j]複製到r[k]中,並令j和k分別加上1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素複製到r中從下標k到下標t的單元。歸併排序的演算法我們通常用遞歸實現,先把待排序區間[s,t]以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸併操作合併成有序的區間[s,t]。 ###############
# -*- coding: UTF-8 -*-
&#39;&#39;&#39;
Created on 2017年9月2日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
&#39;&#39;&#39;
lst = [65,568,9,23,4,34,65,8,6,9]
def merge(left, right):
  i, j = 0, 0
  result = []
  while i < len(left) and j < len(right):
    if left[i] <= right[j]:
      result.append(left[i])
      i += 1
    else:
      result.append(right[j])
      j += 1
  result += left[i:]
  result += right[j:]
  print(result)
  return result
def merge_sort(lists):# 归并排序
  if len(lists) <= 1:
    return lists
  num = int(len(lists) / 2)
  left = merge_sort(lists[:num])
  right = merge_sort(lists[num:])
  return merge(left, right)
登入後複製
###程式結果範例:###

總結有關python八大排序演算法(下)

8、桶排序/基数排序(Radix Sort)

优点:快,效率最好能达到O(1)
缺点:

1.首先是空间复杂度比较高,需要的额外开销大。排序有两个数组的空间开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间。

2.其次待排序的元素都要在一定的范围内等等。

算法思想:

是将阵列分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序)。桶排序是鸽巢排序的一种归纳结果。当要被排序的阵列内的数值是均匀分配的时候,桶排序使用线性时间(Θ(n))。但桶排序并不是 比较排序,他不受到 O(n log n) 下限的影响。
简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的在进行排序。
例如要对大小为[1..1000]范围内的n个整数A[1..n]排序

首先,可以把桶大小设为10,这样就有100个桶了,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储 (10..20]的整数,……集合B[i]存储( (i-1)*10, i*10]的整数,i = 1,2,..100。总共有 100个桶。

然后,对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。 再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任 何排序法都可以。

最后,依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这 样就得到所有数字排好序的一个序列了。

假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。如果

对每个桶中的数字采用快速排序,那么整个算法的复杂度是

O(n + m * n/m*log(n/m)) = O(n + nlogn - nlogm)

从上式看出,当m接近n的时候,桶排序复杂度接近O(n)

当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。这个假设是很强的 ,实际应用中效果并没有这么好。如果所有的数字都落在同一个桶中,那就退化成一般的排序了。

python代码实现:


# -*- coding: UTF-8 -*-
&#39;&#39;&#39;
Created on 2017年9月2日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
&#39;&#39;&#39;
import math
lst = [65,56,9,23,84,34,8,6,9,54,11]
#因为列表数据范围在100以内,所以将使用十个桶来进行排序
def radix_sort(lists, radix=10):
  k = int(math.ceil(math.log(max(lists), radix)))
  bucket = [[] for i in range(radix)]
  for i in range(1, k+1):
    for j in lists:
      gg = int(j/(radix**(i-1))) % (radix**i)
      bucket[gg].append(j)
    del lists[:]
    for z in bucket:
      lists += z
      del z[:]
      print(lists)
  return lists
登入後複製

程序运行测试结果:

總結有關python八大排序演算法(下)

以上是總結有關python八大排序演算法(下)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles