已知一組無序資料a[1]、a[2]、……a[n],需將其依升序排列。首先任取資料a[x]為基準。比較a[x]與其它資料並排序,使a[x]排在資料的第k位,並且使a[1]~a[k-1]中的每一個資料
a[x],然後採用分治的策略分別對a[1]~a[k-1]和a[k+1]~a [n]兩組資料進行快速排序。 優點:極快,資料移動少;
缺點:不穩定。
python程式碼實作:
def quick_sort(list):
little = []
pivotList = []
large = []
# 递归出口
if len(list) <= 1:
return list
else:
# 将第一个值做为基准
pivot = list[0]
for i in list:
# 将比基准小的值放到less数列
if i < pivot:
little.append(i)
# 将比基准大的值放到more数列
elif i > pivot:
large.append(i)
# 将和基准相同的值保存在基准数列
else:
pivotList.append(i)
# 对less数列和more数列继续进行快速排序
little = quick_sort(little)
large = quick_sort(large)
return little + pivotList + large
登入後複製
下面這段程式碼出自《Python cookbook 第二版的三行實作python快速排序。
#!/usr/bin/env python
#coding:utf-8
'''
file:python-8sort.py
date:9/1/17 9:03 AM
author:lockey
email:lockey@123.com
desc:python实现八大排序算法
'''
lst = [65,568,9,23,4,34,65,8,6,9]
def quick_sort(list):
if len(list) <= 1:
return list
else:
pivot = list[0]
return quick_sort([x for x in list[1:] if x < pivot]) + \
[pivot] + \
quick_sort([x for x in list[1:] if x >= pivot])
登入後複製
執行測試結果截圖:#好吧,還有更精簡的語法糖,一行完事:
quick_sort = lambda xs : ( (len(xs) <= 1 and [xs]) or [ quick_sort( [x for x in xs[1:] if x < xs[0 ]] ) + [xs[0]] + quick_sort( [x for x in xs[1:] if x >= xs[0]] ) ] )[0]
#若初始序列依關鍵碼有序或基本有序時,快排序反而蛻化為冒泡排序。為改進之,通常以「三者取中法」來選取基準記錄,即將排序區間的兩個端點與中點三個記錄關鍵碼居中的調整為支點記錄。快速排序是一個不穩定的排序方法。 ######在改進演算法中,我們將只對長度大於k的子序列遞歸調用快速排序,讓原序列基本有序,然後再對整個基本有序序列用插入排序演算法排序。實踐證明,改進後的演算法時間複雜度有所降低,且當k取值為 8 左右時,改進演算法的性能最佳。 #########6、堆排序(Heap Sort)#########堆排序是一種樹狀選擇排序,是直接選擇排序的有效改進。 #########優點: 效率高###缺點:不穩定######堆的定義下:具有n個元素的序列(h1,h2,...,hn),當且僅當滿足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)時稱為堆。這裡只討論滿足前者條件的堆。由堆的定義可以看出,堆頂元素(即第一個元素)必為最大項(大頂堆)。完全二 叉樹可以很直觀地表示堆的結構。堆頂為根,其它為左子樹、右子樹。 #########演算法思想:######初始時把要排序的數的序列看作是一棵順序儲存的二元樹,調整它們的儲存序,使之成為一個堆,這時堆的根節點的數最大。然後將根節點與堆的最後一個節點交換。然後對前面(n-1)個數重新調整使之成為堆。依此類推,直到只有兩個節點的堆,並對 它們作交換,最後得到有n個節點的有序序列。從演算法描述來看,堆排序需要兩個過程,一是建立堆,二是堆頂與堆的最後一個元素交換位置。所以堆排序有兩個函數組成。一是建堆的滲透函數,二是反覆呼叫滲透函數實現排序的函數。 #########python程式碼實作:############# -*- coding: UTF-8 -*-
'''
Created on 2017年9月2日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
'''
lst = [65,568,9,23,4,34,65,8,6,9]
def adjust_heap(lists, i, size):# 调整堆
lchild = 2 * i + 1;rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
def build_heap(lists, size):# 创建堆
halfsize = int(size/2)
for i in range(0, halfsize)[::-1]:
adjust_heap(lists, i, size)
def heap_sort(lists):# 堆排序
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
print(lists)
登入後複製
###結果範例:################## 7.歸併排序#########演算法思想:######歸併(Merge)排序是建立在歸併操作上的一種有效的排序演算法,該演算法是採用分治法的一個非常典型的應用。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱為二路歸併。 ######歸併過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]複製到r[k]中,並令i和k分別加上1;否則將第二個有序表中的元素a[j]複製到r[k]中,並令j和k分別加上1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素複製到r中從下標k到下標t的單元。歸併排序的演算法我們通常用遞歸實現,先把待排序區間[s,t]以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸併操作合併成有序的區間[s,t]。 ################ -*- coding: UTF-8 -*-
'''
Created on 2017年9月2日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
'''
lst = [65,568,9,23,4,34,65,8,6,9]
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
print(result)
return result
def merge_sort(lists):# 归并排序
if len(lists) <= 1:
return lists
num = int(len(lists) / 2)
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
登入後複製
###程式結果範例:###8、桶排序/基数排序(Radix Sort)
优点:快,效率最好能达到O(1)
缺点:
1.首先是空间复杂度比较高,需要的额外开销大。排序有两个数组的空间开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间。
2.其次待排序的元素都要在一定的范围内等等。
算法思想:
是将阵列分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序)。桶排序是鸽巢排序的一种归纳结果。当要被排序的阵列内的数值是均匀分配的时候,桶排序使用线性时间(Θ(n))。但桶排序并不是 比较排序,他不受到 O(n log n) 下限的影响。
简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的在进行排序。
例如要对大小为[1..1000]范围内的n个整数A[1..n]排序
首先,可以把桶大小设为10,这样就有100个桶了,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储 (10..20]的整数,……集合B[i]存储( (i-1)*10, i*10]的整数,i = 1,2,..100。总共有 100个桶。
然后,对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。 再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任 何排序法都可以。
最后,依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这 样就得到所有数字排好序的一个序列了。
假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。如果
对每个桶中的数字采用快速排序,那么整个算法的复杂度是
O(n + m * n/m*log(n/m)) = O(n + nlogn - nlogm)
从上式看出,当m接近n的时候,桶排序复杂度接近O(n)
当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。这个假设是很强的 ,实际应用中效果并没有这么好。如果所有的数字都落在同一个桶中,那就退化成一般的排序了。
python代码实现:
# -*- coding: UTF-8 -*-
'''
Created on 2017年9月2日
Running environment:win7.x86_64 eclipse python3
@author: Lockey
'''
import math
lst = [65,56,9,23,84,34,8,6,9,54,11]
#因为列表数据范围在100以内,所以将使用十个桶来进行排序
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
gg = int(j/(radix**(i-1))) % (radix**i)
bucket[gg].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
print(lists)
return lists
登入後複製
程序运行测试结果: