張炎潑先生於2016年加入白山雲科技,主要負責對象儲存研發、資料跨機房分佈及修復問題解決等工作。以達成100PB級資料儲存為目標,其帶領團隊完成全網分散式儲存系統的設計、實現與部署工作,將資料「冷」「熱」分離,使冷資料成本壓縮至1.2倍冗餘度。
張炎潑先生2006年至2015年,曾就職於新浪,負責Cross-IDC PB級雲端儲存服務的架構設計、協作流程製定、程式碼規格和實施標準制定及大部分功能實現等工作,支援新浪微博、微盤、視訊、SAE、音樂、軟體下載等新浪內部儲存等業務;2015年至2016年,於美團擔任高級技術專家,設計了跨機房的百PB物件儲存解決方案:設計和實現高並發和高可靠的多副本複製策略,優化Erasure Code降低90%IO開銷。
軟體開發中,一個hash表相當於把n個key隨機放入到b個bucket中,以實現n個資料在b個單位空間的儲存。
我們發現hash表中存在一些有趣現象:
當hash表中key和bucket數量一樣時(n/b=1):
37% 的bucket是空的
37% 的bucket裡只有1個key
26% 的bucket裡有1個以上的key(hash衝突)
key的數量對3類bucket數量的影響
下表表示當b不變,n增加時,n/b的值如何影響3類bucket的數量佔比(衝突率即含有多於1個key的bucket佔比): #更直觀一點,我們用下圖來展示空bucket率和衝突率隨n/b值的變化趨勢:key數量對bucket均勻程度的影響
上面幾組數字是當n/b較小時有意義的參考值,但隨n/b逐漸增大,空bucket與1個key的bucket數量幾乎為0,絕大多數bucket含有多個key。 當n/b超過1(1個bucket允許儲存多個key), 我們主要觀察的物件就轉變成bucket裡key數量的分佈規律。 下表表示當n/b較大,每個bucket裡key的數量趨於均勻時,不均勻的程度是多少。 為了描述這種不均勻的程度,我們使用bucket中key數量的最大值和最小值之間的比例((most-fewest)/most)來表示。
和空bucket或1个key的bucket的占比不同n/b,均匀程度不仅取决于n/b的值,也受b值的影响,后面会提到。 未使用统计中常用的均方差法去描述key分布的不均匀程度,是因为软件开发过程中,更多时候要考虑最坏情况下所需准备的内存等资源。
线性探测是一个经常被使用的解决插入时hash冲突的算法,它在1个bucket出现冲突时,按照逐步增加的步长顺序向后查看这个bucket后面的bucket,直到找到1个空bucket。因此它对hash的冲突非常敏感。
在很多内存hash表的实现中,选择n/b=<p>hash表特性小秘訣:<strong></strong></p>
另外一种hash表的实现,专门用来存储比较多的key,当 n/b>1n/b1.0时,线性探测失效(没有足够的bucket存储每个key)。这时1个bucket里不仅存储1个key,一般在一个bucket内用chaining,将所有落在这个bucket的key用链表连接起来,来解决冲突时多个key的存储。
链表只在n/b不是很大时适用。因为链表的查找需要O(n)的时间开销,对于非常大的n/b,有时会用tree替代链表来管理bucket内的key。
n/b值较大的使用场景之一是:将一个网站的用户随机分配到多个不同的web-server上,这时每个web-server可以服务多个用户。多数情况下,我们都希望这种分配能尽可能均匀,从而有效利用每个web-server资源。
这就要求我们关注hash的均匀程度。因此,接下来要讨论的是,假定hash函数完全随机的,均匀程度根据n和b如何变化。
n/b 越大,key的分布越均匀
当 n/b 足够大时,空bucket率趋近于0,且每个bucket中key的数量趋于平均。每个bucket中key数量的期望是:
avg=n/b
定义一个bucket平均key的数量是100%:bucket中key的数量刚好是n/b,下图分别模拟了 b=20,n/b分别为 10、100、1000时,bucket中key的数量分布。
可以看出,当 n/b 增大时,bucket中key数量的最大值与最小值差距在逐渐缩小。下表列出了随b和n/b增大,key分布的均匀程度的变化:
结论:
上述大部分结果来自于程序模拟,现在我们来解决从数学上如何计算这些数值。
每类bucket的数量
空bucket数量
对于1个key, 它不在某个特定的bucket的概率是 (b−1)/b
所有key都不在某个特定的bucket的概率是( (b−1)/b)n
已知:
空bucket率是:
空bucket数量为:
有1个key的bucket数量
n个key中,每个key有1/b的概率落到某个特定的bucket里,其他key以1-(1/b)的概率不落在这个bucket里,因此,对某个特定的bucket,刚好有1个key的概率是:
刚好有1个key的bucket数量为:
多个key的bucket
剩下即为含多个key的bucket数量:
类似的,1个bucket中刚好有i个key的概率是:n个key中任选i个,并都以1/b的概率落在这个bucket里,其他n-i个key都以1-1/b的概率不落在这个bucket里,即:
这就是著名的二项式分布。
我们可通过二项式分布估计bucket中key数量的最大值与最小值。
通过正态分布来近似
当 n, b 都很大时,二项式分布可以用正态分布来近似估计key分布的均匀性:
p=1/b,1个bucket中刚好有i个key的概率为:
1个bucket中key数量不多于x的概率是:
所以,所有不多于x个key的bucket数量是:
bucket中key数量的最小值,可以这样估算: 如果不多于x个key的bucket数量是1,那么这唯一1个bucket就是最少key的bucket。我们只要找到1个最小的x,让包含不多于x个key的bucket总数为1, 这个x就是bucket中key数量的最小值。
一个bucket里包含不多于x个key的概率是:
Φ(x) 是正态分布的累计分布函数,当x-μ趋近于0时,可以使用以下方式来近似:
这个函数的计算较难,但只是要找到x,我们可以在[0~μ]的范围内逆向遍历x,以找到一个x 使得包含不多于x个key的bucket期望数量是1。
x可以认为这个x就是bucket里key数量的最小值,而这个hash表中,不均匀的程度可以用key数量最大值与最小值的差异来描述: 因为正态分布是对称的,所以key数量的最大值可以用 μ + (μ-x) 来表示。最终,bucket中key数量最大值与最小值的比例就是:
(μ是均值n/b)
以下python脚本模拟了key在bucket中分布的情况,同时可以作为对比,验证上述计算结果。
import sysimport mathimport timeimport hashlibdef normal_pdf(x, mu, sigma): x = float(x) mu = float(mu) m = 1.0 / math.sqrt( 2 * math.pi ) / sigma n = math.exp(-(x-mu)**2 / (2*sigma*sigma))return m * ndef normal_cdf(x, mu, sigma): # integral(-oo,x) x = float(x) mu = float(mu) sigma = float(sigma) # to standard form x = (x - mu) / sigma s = x v = x for i in range(1, 100): v = v * x * x / (2*i+1) s += v return 0.5 + s/(2*math.pi)**0.5 * math.e ** (-x*x/2)def difference(nbucket, nkey): nbucket, nkey= int(nbucket), int(nkey) # binomial distribution approximation by normal distribution # find the bucket with minimal keys. # # the probability that a bucket has exactly i keys is: # # probability density function # normal_pdf(i, mu, sigma) # # the probability that a bucket has 0 ~ i keys is: # # cumulative distribution function # normal_cdf(i, mu, sigma) # # if the probability that a bucket has 0 ~ i keys is greater than 1/nbucket, we # say there will be a bucket in hash table has: # (i_0*p_0 + i_1*p_1 + ...)/(p_0 + p_1 + ..) keys. p = 1.0 / nbucket mu = nkey * p sigma = math.sqrt(nkey * p * (1-p)) target = 1.0 / nbucket minimal = mu while True: xx = normal_cdf(minimal, mu, sigma) if abs(xx-target) < target/10: break minimal -= 1 return minimal, (mu-minimal) * 2 / (mu + (mu - minimal))def difference_simulation(nbucket, nkey): t = str(time.time()) nbucket, nkey= int(nbucket), int(nkey) buckets = [0] * nbucket for i in range(nkey): hsh = hashlib.sha1(t + str(i)).digest() buckets[hash(hsh) % nbucket] += 1 buckets.sort() nmin, mmax = buckets[0], buckets[-1] return nmin, float(mmax - nmin) / mmaxif __name__ == "__main__": nbucket, nkey= sys.argv[1:] minimal, rate = difference(nbucket, nkey) print 'by normal distribution:' print ' min_bucket:', minimal print ' difference:', rate minimal, rate = difference_simulation(nbucket, nkey) print 'by simulation:' print ' min_bucket:', minimal print ' difference:', rate
以上是程式設計師進階篇之hash表的脾性的詳細內容。更多資訊請關注PHP中文網其他相關文章!