首頁 > Java > java教程 > Java集合框架之LinkedHashMap源碼分析詳解

Java集合框架之LinkedHashMap源碼分析詳解

黄舟
發布: 2017-09-26 09:37:12
原創
1453 人瀏覽過

這篇文章主要介紹了Java集合框架源碼分析之LinkedHashMap詳解,內容包括了linkedhashmap的簡介和源碼剖析以及關於LinkedHashMap的源碼總結,內容豐富,需要的朋友可以參考下。

LinkedHashMap簡介

LinkedHashMap是HashMap的子類,與HashMap有著同樣的儲存結構,但它加入了一個雙向鍊錶的頭結點,將所有put到LinkedHashmap的節點一一串成了雙向循環鍊錶,因此它保留了節點插入的順序,可以讓節點的輸出順序與輸入順序相同。

LinkedHashMap可以用來實作LRU演算法(這會在下面的原始碼中進行分析)。

LinkedHashMap同樣是非執行緒安全的,只在單執行緒環境下使用。

LinkedHashMap原始碼剖析

#LinkedHashMap原始碼如下(加入了詳細的註解):


#
package java.util; 
import java.io.*; 
public class LinkedHashMap<K,V> 
  extends HashMap<K,V> 
  implements Map<K,V> 
{ 
  private static final long serialVersionUID = 3801124242820219131L; 
  //双向循环链表的头结点,整个LinkedHashMap中只有一个header, 
  //它将哈希表中所有的Entry贯穿起来,header中不保存key-value对,只保存前后节点的引用 
  private transient Entry<K,V> header; 
  //双向链表中元素排序规则的标志位。 
  //accessOrder为false,表示按插入顺序排序 
  //accessOrder为true,表示按访问顺序排序 
  private final boolean accessOrder; 
  //调用HashMap的构造方法来构造底层的数组 
  public LinkedHashMap(int initialCapacity, float loadFactor) { 
    super(initialCapacity, loadFactor); 
    accessOrder = false;  //链表中的元素默认按照插入顺序排序 
  } 
  //加载因子取默认的0.75f 
  public LinkedHashMap(int initialCapacity) { 
    super(initialCapacity); 
    accessOrder = false; 
  } 
  //加载因子取默认的0.75f,容量取默认的16 
  public LinkedHashMap() { 
    super(); 
    accessOrder = false; 
  } 
  //含有子Map的构造方法,同样调用HashMap的对应的构造方法 
  public LinkedHashMap(Map<? extends K, ? extends V> m) { 
    super(m); 
    accessOrder = false; 
  } 
  //该构造方法可以指定链表中的元素排序的规则 
  public LinkedHashMap(int initialCapacity,float loadFactor,boolean accessOrder) { 
    super(initialCapacity, loadFactor); 
    this.accessOrder = accessOrder; 
  } 
  //覆写父类的init()方法(HashMap中的init方法为空), 
  //该方法在父类的构造方法和Clone、readObject中在插入元素前被调用, 
  //初始化一个空的双向循环链表,头结点中不保存数据,头结点的下一个节点才开始保存数据。 
  void init() { 
    header = new Entry<K,V>(-1, null, null, null); 
    header.before = header.after = header; 
  } 
  //覆写HashMap中的transfer方法,它在父类的resize方法中被调用, 
  //扩容后,将key-value对重新映射到新的newTable中 
  //覆写该方法的目的是为了提高复制的效率, 
  //这里充分利用双向循环链表的特点进行迭代,不用对底层的数组进行for循环。 
  void transfer(HashMap.Entry[] newTable) { 
    int newCapacity = newTable.length; 
    for (Entry<K,V> e = header.after; e != header; e = e.after) { 
      int index = indexFor(e.hash, newCapacity); 
      e.next = newTable[index]; 
      newTable[index] = e; 
    } 
  } 
  //覆写HashMap中的containsValue方法, 
  //覆写该方法的目的同样是为了提高查询的效率, 
  //利用双向循环链表的特点进行查询,少了对数组的外层for循环 
  public boolean containsValue(Object value) { 
    // Overridden to take advantage of faster iterator 
    if (value==null) { 
      for (Entry e = header.after; e != header; e = e.after) 
        if (e.value==null) 
          return true; 
    } else { 
      for (Entry e = header.after; e != header; e = e.after) 
        if (value.equals(e.value)) 
          return true; 
    } 
    return false; 
  } 
  //覆写HashMap中的get方法,通过getEntry方法获取Entry对象。 
  //注意这里的recordAccess方法, 
  //如果链表中元素的排序规则是按照插入的先后顺序排序的话,该方法什么也不做, 
  //如果链表中元素的排序规则是按照访问的先后顺序排序的话,则将e移到链表的末尾处。 
  public V get(Object key) { 
    Entry<K,V> e = (Entry<K,V>)getEntry(key); 
    if (e == null) 
      return null; 
    e.recordAccess(this); 
    return e.value; 
  } 
  //清空HashMap,并将双向链表还原为只有头结点的空链表 
  public void clear() { 
    super.clear(); 
    header.before = header.after = header; 
  } 
  //Enty的数据结构,多了两个指向前后节点的引用 
  private static class Entry<K,V> extends HashMap.Entry<K,V> { 
    // These fields comprise the doubly linked list used for iteration. 
    Entry<K,V> before, after; 
    //调用父类的构造方法 
    Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { 
      super(hash, key, value, next); 
    } 
    //双向循环链表中,删除当前的Entry 
    private void remove() { 
      before.after = after; 
      after.before = before; 
    } 
    //双向循环立链表中,将当前的Entry插入到existingEntry的前面 
    private void addBefore(Entry<K,V> existingEntry) { 
      after = existingEntry; 
      before = existingEntry.before; 
      before.after = this; 
      after.before = this; 
    } 
    //覆写HashMap中的recordAccess方法(HashMap中该方法为空), 
    //当调用父类的put方法,在发现插入的key已经存在时,会调用该方法, 
    //调用LinkedHashmap覆写的get方法时,也会调用到该方法, 
    //该方法提供了LRU算法的实现,它将最近使用的Entry放到双向循环链表的尾部, 
    //accessOrder为true时,get方法会调用recordAccess方法 
    //put方法在覆盖key-value对时也会调用recordAccess方法 
    //它们导致Entry最近使用,因此将其移到双向链表的末尾 
    void recordAccess(HashMap<K,V> m) { 
      LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; 
      //如果链表中元素按照访问顺序排序,则将当前访问的Entry移到双向循环链表的尾部, 
      //如果是按照插入的先后顺序排序,则不做任何事情。 
      if (lm.accessOrder) { 
        lm.modCount++; 
        //移除当前访问的Entry 
        remove(); 
        //将当前访问的Entry插入到链表的尾部 
        addBefore(lm.header); 
      } 
    } 
    void recordRemoval(HashMap<K,V> m) { 
      remove(); 
    } 
  } 
  //迭代器 
  private abstract class LinkedHashIterator<T> implements Iterator<T> { 
  Entry<K,V> nextEntry  = header.after; 
  Entry<K,V> lastReturned = null; 
  /** 
   * The modCount value that the iterator believes that the backing 
   * List should have. If this expectation is violated, the iterator 
   * has detected concurrent modification. 
   */ 
  int expectedModCount = modCount; 
  public boolean hasNext() { 
      return nextEntry != header; 
  } 
  public void remove() { 
    if (lastReturned == null) 
    throw new IllegalStateException(); 
    if (modCount != expectedModCount) 
    throw new ConcurrentModificationException(); 
      LinkedHashMap.this.remove(lastReturned.key); 
      lastReturned = null; 
      expectedModCount = modCount; 
  } 
  //从head的下一个节点开始迭代 
  Entry<K,V> nextEntry() { 
    if (modCount != expectedModCount) 
    throw new ConcurrentModificationException(); 
      if (nextEntry == header) 
        throw new NoSuchElementException(); 
      Entry<K,V> e = lastReturned = nextEntry; 
      nextEntry = e.after; 
      return e; 
  } 
  } 
  //key迭代器 
  private class KeyIterator extends LinkedHashIterator<K> { 
  public K next() { return nextEntry().getKey(); } 
  } 
  //value迭代器 
  private class ValueIterator extends LinkedHashIterator<V> { 
  public V next() { return nextEntry().value; } 
  } 
  //Entry迭代器 
  private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> { 
  public Map.Entry<K,V> next() { return nextEntry(); } 
  } 
  // These Overrides alter the behavior of superclass view iterator() methods 
  Iterator<K> newKeyIterator()  { return new KeyIterator();  } 
  Iterator<V> newValueIterator() { return new ValueIterator(); } 
  Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } 
  //覆写HashMap中的addEntry方法,LinkedHashmap并没有覆写HashMap中的put方法, 
  //而是覆写了put方法所调用的addEntry方法和recordAccess方法, 
  //put方法在插入的key已存在的情况下,会调用recordAccess方法, 
  //在插入的key不存在的情况下,要调用addEntry插入新的Entry 
  void addEntry(int hash, K key, V value, int bucketIndex) { 
    //创建新的Entry,并插入到LinkedHashMap中 
    createEntry(hash, key, value, bucketIndex); 
    //双向链表的第一个有效节点(header后的那个节点)为近期最少使用的节点 
    Entry<K,V> eldest = header.after; 
    //如果有必要,则删除掉该近期最少使用的节点, 
    //这要看对removeEldestEntry的覆写,由于默认为false,因此默认是不做任何处理的。 
    if (removeEldestEntry(eldest)) { 
      removeEntryForKey(eldest.key); 
    } else { 
      //扩容到原来的2倍 
      if (size >= threshold) 
        resize(2 * table.length); 
    } 
  } 
  void createEntry(int hash, K key, V value, int bucketIndex) { 
    //创建新的Entry,并将其插入到数组对应槽的单链表的头结点处,这点与HashMap中相同 
    HashMap.Entry<K,V> old = table[bucketIndex]; 
    Entry<K,V> e = new Entry<K,V>(hash, key, value, old); 
    table[bucketIndex] = e; 
    //每次插入Entry时,都将其移到双向链表的尾部, 
    //这便会按照Entry插入LinkedHashMap的先后顺序来迭代元素, 
    //同时,新put进来的Entry是最近访问的Entry,把其放在链表末尾 ,符合LRU算法的实现 
    e.addBefore(header); 
    size++; 
  } 
  //该方法是用来被覆写的,一般如果用LinkedHashmap实现LRU算法,就要覆写该方法, 
  //比如可以将该方法覆写为如果设定的内存已满,则返回true,这样当再次向LinkedHashMap中put 
  //Entry时,在调用的addEntry方法中便会将近期最少使用的节点删除掉(header后的那个节点)。 
  protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { 
    return false; 
  } 
}
登入後複製

總結

關於LinkedHashMap的源碼,給出以下幾點比較重要的總結:

1、從源碼可以看出,LinkedHashMap中加入了一個head頭結點,將所有插入到該LinkedHashMap中的Entry按照插入的先後順序依序加入以head為頭結點的雙向循環鍊錶的尾部。

1、實際上就是HashMap和LinkedList兩個集合類別的儲存結構的結合。在LinkedHashMapMap中,所有put進來的Entry都保存在哈希表中,但它又額外定義了一個以head為頭結點的空的雙向循環鍊錶,每次put進來Entry,除了將其保存到對哈希表中對應的位置上外,還要將其插入到雙向循環鍊錶的尾部。

2、LinkedHashMap由於繼承自HashMap,因此它具有HashMap的所有特性,同樣允許key和value為null。

3、注意源碼中的accessOrder標誌位,當它false時,表示雙向鍊錶中的元素按照Entry插入LinkedHashMap到中的先後順序排序,即每次put到LinkedHashMap中的Entry都放在雙向鍊錶的尾部,這樣遍歷雙向鍊錶時,Entry的輸出順序便和插入的順序一致,這也是預設的雙向鍊錶的存儲順序;當它為true時,表示雙向鍊錶中的元素按照訪問的先後順序排列,可以看到,雖然Entry插入鍊錶的順序依然是按照其put到LinkedHashMap中的順序,但put和get方法均有調用recordAccess方法(put方法在key相同,覆蓋原有的Entry的情況下呼叫recordAccess方法),該方法判斷accessOrder是否為true,如果是,則將當前訪問的Entry(put進來的Entry或get出來的Entry)移到雙向鍊錶的尾部(key不相同時,put新Entry時,會呼叫addEntry,它會呼叫creatEntry,該方法同樣將新插入的元素放入到雙向鍊錶的尾部,既符合插入的先後順序,又符合訪問的先後順序,因為這時該Entry也被訪問了),否則,什麼都不做。

4、注意建構方法,前四個建構方法都將accessOrder設為false,說明預設是按照插入順序排序的,而第五個建構方法可以自訂傳入的accessOrder的值,因此可以指定雙向循環鍊錶中元素的排序規則,一般要用LinkedHashMap實作LRU演算法,就要用該構造方法,將accessOrder置為true。

5、LinkedHashMap並沒有覆寫HashMap中的put方法,而是覆寫了put方法中呼叫的addEntry方法和recordAccess方法,我們回過頭來再看下HashMap的put方法:


// 将“key-value”添加到HashMap中   
public V put(K key, V value) {   
  // 若“key为null”,则将该键值对添加到table[0]中。   
  if (key == null)   
    return putForNullKey(value);   
  // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。   
  int hash = hash(key.hashCode());   
  int i = indexFor(hash, table.length);   
  for (Entry<K,V> e = table[i]; e != null; e = e.next) {   
    Object k;   
    // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!   
    if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {   
      V oldValue = e.value;   
      e.value = value;   
      e.recordAccess(this);   
      return oldValue;   
    }   
  }   
  // 若“该key”对应的键值对不存在,则将“key-value”添加到table中   
  modCount++;  
  //将key-value添加到table[i]处  
  addEntry(hash, key, value, i);   
  return null;   
}
登入後複製

當要put進來的Entry的key在雜湊表中已經在存在時,會呼叫recordAccess方法,當該key不存在時,則會呼叫addEntry方法將新的Entry插入到對應槽的單鍊錶的頭部。

我們先來看recordAccess方法:


#
//覆写HashMap中的recordAccess方法(HashMap中该方法为空), 
//当调用父类的put方法,在发现插入的key已经存在时,会调用该方法, 
//调用LinkedHashmap覆写的get方法时,也会调用到该方法, 
//该方法提供了LRU算法的实现,它将最近使用的Entry放到双向循环链表的尾部, 
//accessOrder为true时,get方法会调用recordAccess方法 
//put方法在覆盖key-value对时也会调用recordAccess方法 
//它们导致Entry最近使用,因此将其移到双向链表的末尾 
   void recordAccess(HashMap<K,V> m) { 
     LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; 
  //如果链表中元素按照访问顺序排序,则将当前访问的Entry移到双向循环链表的尾部, 
  //如果是按照插入的先后顺序排序,则不做任何事情。 
     if (lm.accessOrder) { 
       lm.modCount++; 
    //移除当前访问的Entry 
       remove(); 
    //将当前访问的Entry插入到链表的尾部 
       addBefore(lm.header); 
     } 
   }
登入後複製

該方法會判斷accessOrder是否為true,如果為true ,它會將目前存取的Entry(這裡指put進來的Entry)移到雙向循環鍊錶的尾部,從而實現雙向鍊錶中的元素按照訪問順序來排序(最近訪問的Entry放到鍊錶的最後,這樣多次下來,前面就是最近沒有被存取的元素,在實作、LRU演算法時,當雙向鍊錶中的節點數達到最大值時,將前面的元素刪去即可,因為前面的元素是最近最少使用的) ,否則什麼都不做。

再來看addEntry方法:


#
//覆写HashMap中的addEntry方法,LinkedHashmap并没有覆写HashMap中的put方法, 
//而是覆写了put方法所调用的addEntry方法和recordAccess方法, 
//put方法在插入的key已存在的情况下,会调用recordAccess方法, 
//在插入的key不存在的情况下,要调用addEntry插入新的Entry 
  void addEntry(int hash, K key, V value, int bucketIndex) { 
  //创建新的Entry,并插入到LinkedHashMap中 
    createEntry(hash, key, value, bucketIndex); 
    //双向链表的第一个有效节点(header后的那个节点)为近期最少使用的节点 
    Entry<K,V> eldest = header.after; 
  //如果有必要,则删除掉该近期最少使用的节点, 
  //这要看对removeEldestEntry的覆写,由于默认为false,因此默认是不做任何处理的。 
    if (removeEldestEntry(eldest)) { 
      removeEntryForKey(eldest.key); 
    } else { 
    //扩容到原来的2倍 
      if (size >= threshold) 
        resize(2 * table.length); 
    } 
  } 
  void createEntry(int hash, K key, V value, int bucketIndex) { 
  //创建新的Entry,并将其插入到数组对应槽的单链表的头结点处,这点与HashMap中相同 
    HashMap.Entry<K,V> old = table[bucketIndex]; 
  Entry<K,V> e = new Entry<K,V>(hash, key, value, old); 
    table[bucketIndex] = e; 
  //每次插入Entry时,都将其移到双向链表的尾部, 
  //这便会按照Entry插入LinkedHashMap的先后顺序来迭代元素, 
  //同时,新put进来的Entry是最近访问的Entry,把其放在链表末尾 ,符合LRU算法的实现 
    e.addBefore(header); 
    size++; 
  }
登入後複製

同樣是將新的Entry插入到table中對應槽所對應單鍊錶的頭結點中,但可以看出,在createEntry中,同樣把新put進來的Entry插入到了雙向鍊錶的尾部,從插入順序的層面來說,新的Entry插入到雙向鍊錶的尾部,可以實現按照插入的先後順序來迭代Entry,而從訪問順序的層面來說,新put進來的Entry又是最近訪問的Entry,也應該將其放在雙向鍊錶的尾部。

上面還有個removeEldestEntry方法,該方法如下:


#
 //该方法是用来被覆写的,一般如果用LinkedHashmap实现LRU算法,就要覆写该方法, 
  //比如可以将该方法覆写为如果设定的内存已满,则返回true,这样当再次向LinkedHashMap中put 
  //Entry时,在调用的addEntry方法中便会将近期最少使用的节点删除掉(header后的那个节点)。 
  protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { 
    return false; 
  } 
}
登入後複製

该方法默认返回false,我们一般在用LinkedHashMap实现LRU算法时,要覆写该方法,一般的实现是,当设定的内存(这里指节点个数)达到最大值时,返回true,这样put新的Entry(该Entry的key在哈希表中没有已经存在)时,就会调用removeEntryForKey方法,将最近最少使用的节点删除(head后面的那个节点,实际上是最近没有使用)。

6、LinkedHashMap覆写了HashMap的get方法:


//覆写HashMap中的get方法,通过getEntry方法获取Entry对象。 
//注意这里的recordAccess方法, 
//如果链表中元素的排序规则是按照插入的先后顺序排序的话,该方法什么也不做, 
//如果链表中元素的排序规则是按照访问的先后顺序排序的话,则将e移到链表的末尾处。 
  public V get(Object key) { 
    Entry<K,V> e = (Entry<K,V>)getEntry(key); 
    if (e == null) 
      return null; 
    e.recordAccess(this); 
    return e.value; 
  }
登入後複製

先取得Entry,如果不为null,一样调用recordAccess方法,上面已经说得很清楚,这里不在多解释了。

7、最后说说LinkedHashMap是如何实现LRU的。

首先,当accessOrder为true时,才会开启按访问顺序排序的模式,才能用来实现LRU算法。我们可以看到,无论是put方法还是get方法,都会导致目标Entry成为最近访问的Entry,因此便把该Entry加入到了双向链表的末尾(get方法通过调用recordAccess方法来实现,put方法在覆盖已有key的情况下,也是通过调用recordAccess方法来实现,在插入新的Entry时,则是通过createEntry中的addBefore方法来实现),这样便把最近使用了的Entry放入到了双向链表的后面,多次操作后,双向链表前面的Entry便是最近没有使用的,这样当节点个数满的时候,删除的最前面的Entry(head后面的那个Entry)便是最近最少使用的Entry。

结束语

以上是Java集合框架之LinkedHashMap源碼分析詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板