首頁 Java java教程 Java中關於最短路徑演算法之Dijkstra演算法的實現

Java中關於最短路徑演算法之Dijkstra演算法的實現

Oct 13, 2017 am 10:29 AM
java 演算法 路徑

這篇文章主要介紹了java實現最短路徑演算法之Dijkstra演算法, Dijkstra演算法是最短路徑演算法中為人熟知的一種,是單起點全路徑演算法,有興趣的可以了解

#前言

Dijkstra演算法是最短路徑演算法中為人熟知的一種,是單起點全路徑演算法。該演算法被稱為是「貪心演算法」的成功典範。本文接下來將嘗試以最通俗的語言來介紹這個偉大的演算法,並賦予java實作程式碼。

一、知識準備:

1、表示圖的資料結構

用於儲存圖的資料結構有多種,本演算法中筆者使用的是鄰接矩陣。

圖的鄰接矩陣儲存方式是用兩個陣列來表示圖。一個一維數組儲存圖中頂點信息,一個二維數組(鄰接矩陣)儲存圖中的邊或弧的信息。

設圖G有n個頂點,則鄰接矩陣為n*n的方陣,定義為:

##從上面可以看出,無向圖的邊數組是一個對稱矩陣。所謂對稱矩陣就是n階矩陣的元滿足aij = aji。即從矩陣的左上角到右下角的主對角線為軸,右上角的元和左下角相對應的元全都是相等的。

從這個矩陣中,很容易知道圖中的資訊。

(1)要判斷任兩頂點是否有邊無邊就很容易了;

(2)要知道某個頂點的度,其實就是這個頂點vi在鄰接矩陣中第i行或(第i列)的元素總和;

(3)求頂點vi的所有鄰接點就是將矩陣中第i行元素掃描一遍,arc[i][j]為1就是鄰接點;

而有向圖講究入度和出度,頂點vi的入度為1,正好是第i列各數之和。頂點vi的出度為2,即第i行的各數和。

有向圖的定義也類似,故不做贅述。

2、單一起點全路徑

所謂單一起點全路徑,就是指在一個圖中,從一個起點出發,到所有節點的最短路徑。

3、圖論的基本知識(讀者需自行尋找相關資料)

4、互補鬆弛條件

設標量d1,d2,....,dN滿足

dj<=di + aij,  (i,j)屬於A,

且P是以i1為起點ik為終點的路,如果

dj = di + aij, 對P的所有邊(i, j)

成立,那麼P是從i1到ik的最短路。其中,滿足上面兩式的稱為最短路問題的互補鬆弛條件。

二、演算法思想

1、令G = (V,E)為一個帶權無向圖。 G中若有兩個相鄰的節點,i和j。 aij(在這及其後面都表示為下標,請注意)為節點i到節點j的權值,在本演算法可以理解為距離。每個節點都有一個值di(節點標記)表示其從起點到它的某條路的距離。

2、演算法初始有一個數組V用於儲存未訪問節點的列表,我們暫稱為候選列表。選定節點1為起始節點。開始時,節點1的d1=0, 其他節點di=無窮大,V為所有節點。

初始化條件後,然後開始迭代演算法,直到V為空集合時停止。具體迭代步驟如下:

將d值最小的節點di從候選清單中移除。 (本例中V的資料結構採用的是優先隊列實現最小值出列,最好使用斐波那契對,在以前文章有過介紹,性能有大幅提示)。對於以該節點為起點的每一條邊,不包括移除V的節點, (i, j)屬於A, 若dj > di + aij(違反鬆弛條件),則令

dj = di + aij    , (如果j已經從V中移除過,說明其最小距離已經計算出,不參與此次計算)

可以看到在演算法的運算工程中,節點的d值是單調不增的

具體演算法圖解如下

#  

#  


三、java程式碼實作


######
public class Vertex implements Comparable<Vertex>{

  /**
   * 节点名称(A,B,C,D)
   */
  private String name;
  
  /**
   * 最短路径长度
   */
  private int path;
  
  /**
   * 节点是否已经出列(是否已经处理完毕)
   */
  private boolean isMarked;
  
  public Vertex(String name){
    this.name = name;
    this.path = Integer.MAX_VALUE; //初始设置为无穷大
    this.setMarked(false);
  }
  
  public Vertex(String name, int path){
    this.name = name;
    this.path = path;
    this.setMarked(false);
  }
  
  @Override
  public int compareTo(Vertex o) {
    return o.path > path?-1:1;
  }
}
登入後複製
#########
public class Graph {

  /*
   * 顶点
   */
  private List<Vertex> vertexs;

  /*
   * 边
   */
  private int[][] edges;

  /*
   * 没有访问的顶点
   */
  private Queue<Vertex> unVisited;

  public Graph(List<Vertex> vertexs, int[][] edges) {
    this.vertexs = vertexs;
    this.edges = edges;
    initUnVisited();
  }
  
  /*
   * 搜索各顶点最短路径
   */
  public void search(){
    while(!unVisited.isEmpty()){
      Vertex vertex = unVisited.element();
      //顶点已经计算出最短路径,设置为"已访问"
       vertex.setMarked(true);  
      //获取所有"未访问"的邻居
        List<Vertex> neighbors = getNeighbors(vertex);  
      //更新邻居的最短路径
      updatesDistance(vertex, neighbors);    
      pop();
    }
    System.out.println("search over");
  }
  
  /*
   * 更新所有邻居的最短路径
   */
  private void updatesDistance(Vertex vertex, List<Vertex> neighbors){
    for(Vertex neighbor: neighbors){
      updateDistance(vertex, neighbor);
    }
  }
  
  /*
   * 更新邻居的最短路径
   */
  private void updateDistance(Vertex vertex, Vertex neighbor){
    int distance = getDistance(vertex, neighbor) + vertex.getPath();
    if(distance < neighbor.getPath()){
      neighbor.setPath(distance);
    }
  }

  /*
   * 初始化未访问顶点集合
   */
  private void initUnVisited() {
    unVisited = new PriorityQueue<Vertex>();
    for (Vertex v : vertexs) {
      unVisited.add(v);
    }
  }

  /*
   * 从未访问顶点集合中删除已找到最短路径的节点
   */
  private void pop() {
    unVisited.poll();
  }

  /*
   * 获取顶点到目标顶点的距离
   */
  private int getDistance(Vertex source, Vertex destination) {
    int sourceIndex = vertexs.indexOf(source);
    int destIndex = vertexs.indexOf(destination);
    return edges[sourceIndex][destIndex];
  }

  /*
   * 获取顶点所有(未访问的)邻居
   */
  private List<Vertex> getNeighbors(Vertex v) {
    List<Vertex> neighbors = new ArrayList<Vertex>();
    int position = vertexs.indexOf(v);
    Vertex neighbor = null;
    int distance;
    for (int i = 0; i < vertexs.size(); i++) {
      if (i == position) {
        //顶点本身,跳过
        continue;
      }
      distance = edges[position][i];  //到所有顶点的距离
      if (distance < Integer.MAX_VALUE) {
        //是邻居(有路径可达)
        neighbor = getVertex(i);
        if (!neighbor.isMarked()) {
          //如果邻居没有访问过,则加入list;
          neighbors.add(neighbor);
        }
      }
    }
    return neighbors;
  }

  /*
   * 根据顶点位置获取顶点
   */
  private Vertex getVertex(int index) {
    return vertexs.get(index);
  }

  /*
   * 打印图
   */
  public void printGraph() {
    int verNums = vertexs.size();
    for (int row = 0; row < verNums; row++) {
      for (int col = 0; col < verNums; col++) {
        if(Integer.MAX_VALUE == edges[row][col]){
          System.out.print("X");
          System.out.print(" ");
          continue;
        }
        System.out.print(edges[row][col]);
        System.out.print(" ");
      }
      System.out.println();
    }
  }
}
登入後複製
#########
public class Test {

  public static void main(String[] args){
    List<Vertex> vertexs = new ArrayList<Vertex>();
    Vertex a = new Vertex("A", 0);
    Vertex b = new Vertex("B");
    Vertex c = new Vertex("C");
    Vertex d = new Vertex("D");
    Vertex e = new Vertex("E");
    Vertex f = new Vertex("F");
    vertexs.add(a);
    vertexs.add(b);
    vertexs.add(c);
    vertexs.add(d);
    vertexs.add(e);
    vertexs.add(f);
    int[][] edges = {
        {Integer.MAX_VALUE,6,3,Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE},
        {6,Integer.MAX_VALUE,2,5,Integer.MAX_VALUE,Integer.MAX_VALUE},
        {3,2,Integer.MAX_VALUE,3,4,Integer.MAX_VALUE},
        {Integer.MAX_VALUE,5,3,Integer.MAX_VALUE,5,3},
        {Integer.MAX_VALUE,Integer.MAX_VALUE,4,5,Integer.MAX_VALUE,5},
        {Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE,3,5,Integer.MAX_VALUE}
    
    };
    Graph graph = new Graph(vertexs, edges);
    graph.printGraph();
    graph.search();
  }
  
}
登入後複製

以上是Java中關於最短路徑演算法之Dijkstra演算法的實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Java 中的完美數 Java 中的完美數 Aug 30, 2024 pm 04:28 PM

Java 完美數指南。這裡我們討論定義,如何在 Java 中檢查完美數?

Java中的Weka Java中的Weka Aug 30, 2024 pm 04:28 PM

Java 版 Weka 指南。這裡我們透過範例討論簡介、如何使用 weka java、平台類型和優點。

Java 中的史密斯數 Java 中的史密斯數 Aug 30, 2024 pm 04:28 PM

Java 史密斯數指南。這裡我們討論定義,如何在Java中檢查史密斯號?帶有程式碼實現的範例。

Java Spring 面試題 Java Spring 面試題 Aug 30, 2024 pm 04:29 PM

在本文中,我們保留了最常被問到的 Java Spring 面試問題及其詳細答案。這樣你就可以順利通過面試。

突破或從Java 8流返回? 突破或從Java 8流返回? Feb 07, 2025 pm 12:09 PM

Java 8引入了Stream API,提供了一種強大且表達力豐富的處理數據集合的方式。然而,使用Stream時,一個常見問題是:如何從forEach操作中中斷或返回? 傳統循環允許提前中斷或返回,但Stream的forEach方法並不直接支持這種方式。本文將解釋原因,並探討在Stream處理系統中實現提前終止的替代方法。 延伸閱讀: Java Stream API改進 理解Stream forEach forEach方法是一個終端操作,它對Stream中的每個元素執行一個操作。它的設計意圖是處

Java 中的時間戳至今 Java 中的時間戳至今 Aug 30, 2024 pm 04:28 PM

Java 中的時間戳記到日期指南。這裡我們也結合範例討論了介紹以及如何在java中將時間戳記轉換為日期。

Java程序查找膠囊的體積 Java程序查找膠囊的體積 Feb 07, 2025 am 11:37 AM

膠囊是一種三維幾何圖形,由一個圓柱體和兩端各一個半球體組成。膠囊的體積可以通過將圓柱體的體積和兩端半球體的體積相加來計算。本教程將討論如何使用不同的方法在Java中計算給定膠囊的體積。 膠囊體積公式 膠囊體積的公式如下: 膠囊體積 = 圓柱體體積 兩個半球體體積 其中, r: 半球體的半徑。 h: 圓柱體的高度(不包括半球體)。 例子 1 輸入 半徑 = 5 單位 高度 = 10 單位 輸出 體積 = 1570.8 立方單位 解釋 使用公式計算體積: 體積 = π × r2 × h (4

如何在Spring Tool Suite中運行第一個春季啟動應用程序? 如何在Spring Tool Suite中運行第一個春季啟動應用程序? Feb 07, 2025 pm 12:11 PM

Spring Boot簡化了可靠,可擴展和生產就緒的Java應用的創建,從而徹底改變了Java開發。 它的“慣例慣例”方法(春季生態系統固有的慣例),最小化手動設置

See all articles