如何使用MongoDB索引
本文我們將要和大家分享MongoDB索引的使用詳解,索引就像書的目錄,如果查找某內容在沒有目錄的幫助下,只能全篇查找翻閱,這導致效率非常的低下;如果在藉助目錄情況下,就能很快的定位具體內容所在區域,效率會直線提高。
索引簡介
先開啟命令列,輸入mongo。預設mongodb會連接名為test的資料庫。
➜ ~ mongo
MongoDB shell version: 2.4.9 connecting to: test > show collections >
可以使用show collections/tables查看資料庫為空。
然後在mongodb命令列終端執行如下程式碼
> for(var i=0;i<100000;i++) { ... db.users.insert({username:'user'+i}) ... } > show collections system.indexes users >
再查看資料庫發現多了system.indexes 和
users兩個表,前者即所謂的索引,後者為新建的資料庫表。
這樣user表中即有了10萬個資料。
> db.users.find() { "_id" : ObjectId("5694d5da8fad9e319c5b43e4"), "username" : "user0" } { "_id" : ObjectId("5694d5da8fad9e319c5b43e5"), "username" : "user1" } { "_id" : ObjectId("5694d5da8fad9e319c5b43e6"), "username" : "user2" } { "_id" : ObjectId("5694d5da8fad9e319c5b43e7"), "username" : "user3" } { "_id" : ObjectId("5694d5da8fad9e319c5b43e8"), "username" : "user4" } { "_id" : ObjectId("5694d5da8fad9e319c5b43e9"), "username" : "user5" }
現在需要查找其中任何一條數據,比如
> db.users.find({username: 'user1234'}) { "_id" : ObjectId("5694d5db8fad9e319c5b48b6"), "username" : "user1234" }
發現這條數據成功找到,但需要了解詳細信息,需要加上explain方法
> db.users.find({username: 'user1234'}).explain() { "cursor" : "BasicCursor", "isMultiKey" : false, "n" : 1, "nscannedObjects" : 100000, "nscanned" : 100000, "nscannedObjectsAllPlans" : 100000, "nscannedAllPlans" : 100000, "scanAndOrder" : false, "indexOnly" : false, "nYields" : 0, "nChunkSkips" : 0, "millis" : 30, "indexBounds" : { }, "server" : "root:27017" }
參數很多,目前我們只關注其中的"nscanned" : 100000和"millis" : 30這兩項。
nscanned表示mongodb在完成這個查詢過程中掃描的文件總數。可以發現,集合中的每個文件都被掃描了,並且總時間為30毫秒。
如果資料有1000萬個,如果每次查詢文件都遍歷一遍。呃,時間也是相當可觀。
對於此類查詢,索引是一個非常好的解決方案。
> db.users.ensureIndex({"username": 1})
然後再找user1234
> db.users.ensureIndex({"username": 1}) > db.users.find({username: 'user1234'}).explain() { "cursor" : "BtreeCursor username_1", "isMultiKey" : false, "n" : 1, "nscannedObjects" : 1, "nscanned" : 1, "nscannedObjectsAllPlans" : 1, "nscannedAllPlans" : 1, "scanAndOrder" : false, "indexOnly" : false, "nYields" : 0, "nChunkSkips" : 0, "millis" : 0, "indexBounds" : { "username" : [ [ "user1234", "user1234" ] ] }, "server" : "root:27017" }
的確有點不可思議,查詢在瞬間完成,因為透過索引只找了一條數據,而不是100000條。
當然使用索引是也是有代價的:對於新增的每一個索引,每次寫入操作(插入、更新、刪除)都將耗費更多的時間。這是因為,當資料發生變化時,不僅要更新文檔,還要更新級集合上的所有索引。因此,mongodb限制每個集合最多有64個索引。通常,在一個特定的集合上,不應該擁有兩個以上的索引。
小技巧
如果一個非常通用的查詢,或者這個查詢造成了效能瓶頸,那麼在某個欄位(例如username)建立索引是非常好的選擇。但只是給管理員用的查詢(不太在意查詢耗費時間),就不該對這個欄位建立索引。
複合索引
索引的值是按一定順序排列的,所以使用索引鍵對文件進行排序非常快。
db.users.find().sort({'age': 1, 'username': 1})
這裡先依照age排序再根據username排序,所以username在這裡發揮的作用並不大。為了優化這個排序,可能需要在age和username上建立索引。
db.users.ensureIndex({'age':1, 'username':
1})
這建立了一個複合索引(建立在多個欄位上的索引),如果查詢條件包含多個鍵,這個索引就非常有用。
建立複合索引後,每個索引條目都包含一個age欄位和一個username字段,並且指向文件在磁碟上的儲存位置。
此時,age欄位是嚴格升序排列的,如果age相等時再依照username升序排列。
查詢方式
點查詢(point query)
用於查詢單一值(儘管包含這個值的文件可能有多個)
db .users.find({'age': 21}).sort({'username': -1})
因為我們已經建立好複合索引,一個age一個username,建立索引時使用的是升序排序(即數字1),當使用點查詢查找{age:21},假設仍然是10萬條數據,可能年齡是21的很多人,因此會找到不止一條數據。然後sort({'username': -1})會對這些資料進行逆序排序,本意是這樣。但我們不要忘記建立索引時'username':1是升序(從小到大),如果想得到逆序只要對資料從最後一個索引開始,依次遍歷即可得到想要的結果。
排序方向並不重要,mongodb可以從任何方向對索引進行遍歷。
綜上,複合索引在點查詢這種情況非常高效,直接定位年齡,不需要對結果進行排序,傳回結果。
多值查詢(multi-value-query)
db.users.find({'age': {"$gte": 21, "$lte": 30}})
尋找多個值相符的文件。多值查詢也可以理解為多個點查詢。
如上,要找年齡介於21到30之間。 monogdb會使用索引的中的第一個鍵"age"來得到匹配的結果,而結果通常是按照索引順序排列的。
db.users.find({'age': {"$gte": 21, "$lte": 30}}).sort({'username': 1})
与上一个类似,这次需要对结果排序。
在没有sort时,我们查询的结果首先是根据age等于21,age等于22..这样从小到大排序,当age等于21有多个时,在进行usernameA-Z(0-9)这样排序。所以,sort({'username':
1}),要将所有结果通过名字升序排列,这次不得不先在内存中进行排序,然后返回。效率不如上一个高。
当然,在文档非常少的情况,排序也花费不了多少时间。
如果结果集很大,比如超过32MB,MongoDB会拒绝对如此多的数据进行排序工作。
还有另外一种解决方案
也可以建立另外一个索引{'username': 1, 'age': 1}, 如果先对username建立索引,当再sortusername,相当没有进行排序。但是需要在整个文档查找age等于21的帅哥美女,所以搜寻时间就长了。
但哪个效率更高呢?
如果建立多个索引,如何选择使用哪个呢?
效率高低是分情况的,如果在没有限制的情况下,不用进行排序但需要搜索整个集合时间会远超过前者。但是在返回部分数据(比如limit(1000)),新的赢家就产生了。
>db.users.find({'age': {"$gte": 21, "$lte": 30}}). sort({username': 1}). limit(1000). hint({'age': 1, 'username': 1}) explain()['millis'] 2031ms >db.users.find({'age': {"$gte": 21, "$lte": 30}}). sort({username': 1}). limit(1000). hint({'username': 1, 'age': 1}). explain()['millis'] 181ms
其中可以使用hint指定要使用的索引。
所以这种方式还是很有优势的。比如一般场景下,我们不会把所有的数据都取出来,只是去查询最近的,所以这种效率也会更高。
索引类型
唯一索引
可以确保集合的每个文档的指定键都有唯一值。
db.users.ensureIndex({'username': 1, unique: true})
比如使用mongoose框架,在定义schema时,即可指定unique:
true.
如果插入2个相同都叫张三的数据,第二次插入的则会失败。_id即为唯一索引,并且不能删除。
稀疏索引
使用sparse可以创建稀疏索引
>db.users.ensureIndex({'email': 1}, {'unique': true, 'sparse': true})
索引管理
system.indexes集合中包含了每个索引的详细信息
db.system.indexes.find()
1.ensureIndex()创建索引
db.users.ensureIndex({'username': 1})
后台创建索引,这样数据库再创建索引的同时,仍然能够处理读写请求,可以指定background选项。
db.test.ensureIndex({"username":1},{"background":true})
2.getIndexes()查看索引
db.collectionName.getIndexes() db.users.getIndexes() [ { "v" : 1, "key" : { "_id" : 1 }, "ns" : "test.users", "name" : "_id_" }, { "v" : 1, "key" : { "username" : 1 }, "ns" : "test.users", "name" : "username_1" } ]
其中v字段只在内部使用,用于标识索引版本。
3.dropIndex删除索引
> db.users.dropIndex("username_1") { "nIndexesWas" : 2, "ok" : 1 }
或
全选复制放进笔记> db.users.dropIndex({"username":1})
以上内容就是MongoDB索引的使用详解,希望对大家有帮助。
相关推荐:
以上是如何使用MongoDB索引的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

在開發一個電商網站時,我遇到了一個棘手的問題:如何為用戶提供個性化的商品推薦。最初,我嘗試了一些簡單的推薦算法,但效果並不理想,用戶的滿意度也因此受到影響。為了提升推薦系統的精度和效率,我決定採用更專業的解決方案。最終,我通過Composer安裝了andres-montanez/recommendations-bundle,這不僅解決了我的問題,還大大提升了推薦系統的性能。可以通過一下地址學習composer:學習地址

本文介紹如何在Debian系統上配置MongoDB實現自動擴容,主要步驟包括MongoDB副本集的設置和磁盤空間監控。一、MongoDB安裝首先,確保已在Debian系統上安裝MongoDB。使用以下命令安裝:sudoaptupdatesudoaptinstall-ymongodb-org二、配置MongoDB副本集MongoDB副本集確保高可用性和數據冗餘,是實現自動擴容的基礎。啟動MongoDB服務:sudosystemctlstartmongodsudosys

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

CentOS系統上GitLab數據庫部署指南選擇合適的數據庫是成功部署GitLab的關鍵步驟。 GitLab兼容多種數據庫,包括MySQL、PostgreSQL和MongoDB。本文將詳細介紹如何選擇並配置這些數據庫。數據庫選擇建議MySQL:一款廣泛應用的關係型數據庫管理系統(RDBMS),性能穩定,適用於大多數GitLab部署場景。 PostgreSQL:功能強大的開源RDBMS,支持複雜查詢和高級特性,適合處理大型數據集。 MongoDB:流行的NoSQL數據庫,擅長處理海

CentOS系統下MongoDB高效備份策略詳解本文將詳細介紹在CentOS系統上實施MongoDB備份的多種策略,以確保數據安全和業務連續性。我們將涵蓋手動備份、定時備份、自動化腳本備份以及Docker容器環境下的備份方法,並提供備份文件管理的最佳實踐。手動備份:利用mongodump命令進行手動全量備份,例如:mongodump-hlocalhost:27017-u用戶名-p密碼-d數據庫名稱-o/備份目錄此命令會將指定數據庫的數據及元數據導出到指定的備份目錄。

MongoDB與關係型數據庫:深度對比本文將深入探討NoSQL數據庫MongoDB與傳統關係型數據庫(如MySQL和SQLServer)的差異。關係型數據庫採用行和列的表格結構組織數據,而MongoDB則使用靈活的面向文檔模型,更適應現代應用的需求。主要區別數據結構:關係型數據庫使用預定義模式的表格存儲數據,表間關係通過主鍵和外鍵建立;MongoDB使用類似JSON的BSON文檔存儲在集合中,每個文檔結構可獨立變化,實現無模式設計。架構設計:關係型數據庫需要預先定義固定的模式;MongoDB支持

在Debian系統上為MongoDB數據庫加密,需要遵循以下步驟:第一步:安裝MongoDB首先,確保您的Debian系統已安裝MongoDB。如果沒有,請參考MongoDB官方文檔進行安裝:https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/第二步:生成加密密鑰文件創建一個包含加密密鑰的文件,並設置正確的權限:ddif=/dev/urandomof=/etc/mongodb-keyfilebs=512

要設置 MongoDB 用戶,請按照以下步驟操作:1. 連接到服務器並創建管理員用戶。 2. 創建要授予用戶訪問權限的數據庫。 3. 使用 createUser 命令創建用戶並指定其角色和數據庫訪問權限。 4. 使用 getUsers 命令檢查創建的用戶。 5. 可選地設置其他權限或授予用戶對特定集合的權限。
