首頁 後端開發 Python教學 K-means演算法在Python中的實現

K-means演算法在Python中的實現

Dec 06, 2017 am 10:28 AM
k-means python 實現

K-means是機器學習中一個比較常用的演算法,屬於無監督學習演算法,其常被用於資料的聚類,只需為它指定簇的數量即可自動將資料聚合到多類中,相同簇中的數據相似度較高,不同簇中數據相似度較低。

K-MEANS演算法是輸入聚類個數k,以及包含 n個資料物件的資料庫,輸出滿足方差最小標準k個聚類的一種演算法。 k-means 演算法接受輸入量k ;然後將n個資料物件劃分為k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。本文將和大家介紹K-means演算法在Python中的實作。

核心思想

透過迭代尋找k個類別簇的一種分割方案,使得用這k個類別簇的平均值來代表對應各類別樣本時所得的總體誤差最小。

k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。

k-means演算法的基礎是最小誤差平方和準則,K-menas的優缺點:

##優點:

原理簡單

速度快
對大資料集有比較好的伸縮性

#缺點:

需要指定聚類數量K

對異常值敏感
對初始值敏感

K-means的聚類過程
##其聚類過程類似於梯度下降演算法,建立代價函數並透過迭代使得代價函數值越來越小

適當選擇c個類別的初始中心;

在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類別;

利用均值等方法更新該類別的中心值;
對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代。

該演算法的最大優勢在於簡潔快速。演算法的關鍵在於初始中心的選擇和距離公式。

K-means 實例展示


python中km的一些參數:

sklearn.cluster.KMeans(
  n_clusters=8,
  init='k-means++', 
  n_init=10, 
  max_iter=300, 
  tol=0.0001, 
  precompute_distances='auto', 
  verbose=0, 
  random_state=None, 
  copy_x=True, 
  n_jobs=1, 
  algorithm='auto'
  )
n_clusters: 簇的个数,即你想聚成几类
init: 初始簇中心的获取方法
n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10个质心,实现算法,然后返回最好的结果。
max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代)
tol: 容忍度,即kmeans运行准则收敛的条件
precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的
verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值)
random_state: 随机生成簇中心的状态条件。
copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。
n_jobs: 并行设置
algorithm: kmeans的实现算法,有:'auto', ‘full', ‘elkan', 其中 ‘full'表示用EM方式实现
虽然有很多参数,但是都已经给出了默认值。所以我们一般不需要去传入这些参数,参数的。可以根据实际需要来调用。
登入後複製


#下面展示一個程式碼範例

from sklearn.cluster import KMeans
from sklearn.externals import joblib
from sklearn import cluster
import numpy as np

# 生成10*3的矩阵
data = np.random.rand(10,3)
print data
# 聚类为4类
estimator=KMeans(n_clusters=4)
# fit_predict表示拟合+预测,也可以分开写
res=estimator.fit_predict(data)
# 预测类别标签结果
lable_pred=estimator.labels_
# 各个类别的聚类中心值
centroids=estimator.cluster_centers_
# 聚类中心均值向量的总和
inertia=estimator.inertia_

print lable_pred
print centroids
print inertia

代码执行结果
[0 2 1 0 2 2 0 3 2 0]

[[ 0.3028348  0.25183096 0.62493622]
 [ 0.88481287 0.70891813 0.79463764]
 [ 0.66821961 0.54817207 0.30197415]
 [ 0.11629904 0.85684903 0.7088385 ]]
 
0.570794546829
登入後複製


#為了更直覺的描述,這次在圖上做一個展示,由於圖像上繪製二維比較直觀,所以資料調整到了二維,選取100個點繪製,聚類類別為3類

##
from sklearn.cluster import KMeans
from sklearn.externals import joblib
from sklearn import cluster
import numpy as np
import matplotlib.pyplot as plt

data = np.random.rand(100,2)
estimator=KMeans(n_clusters=3)
res=estimator.fit_predict(data)
lable_pred=estimator.labels_
centroids=estimator.cluster_centers_
inertia=estimator.inertia_
#print res
print lable_pred
print centroids
print inertia

for i in range(len(data)):
  if int(lable_pred[i])==0:
    plt.scatter(data[i][0],data[i][1],color='red')
  if int(lable_pred[i])==1:
    plt.scatter(data[i][0],data[i][1],color='black')
  if int(lable_pred[i])==2:
    plt.scatter(data[i][0],data[i][1],color='blue')
plt.show()
登入後複製



#可以看到聚類效果還是不錯的,對k-means的聚類效率進行了一個測試,將維度擴寬到50維


資料規模消耗時間資料維度10000條4s50維度#100000條30s50維1000000條4'13s50維#為百萬級的數據,擬合時間還是能夠接受的,可見效率還是不錯,對模型的保存與其它的機器學習演算法模型保存類似

from sklearn.externals import joblib
joblib.dump(km,"model/km_model.m")
登入後複製

以上內容就是K -means演算法在Python中的實現,希望能幫助大家。

相關推薦:

利用k-means聚類演算法辨識圖片主色調

利用k-means聚類演算法辨識圖片主色調_PHP教程

形象理解K-Means演算法

#

以上是K-means演算法在Python中的實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1319
25
PHP教程
1269
29
C# 教程
1248
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles