MongoDB中MapReduce使用
玩過Hadoop的小夥伴對MapReduce應該不陌生,MapReduce的強大且靈活,它可以將一個大問題拆分為多個小問題,將各個小問題發送到不同的機器上去處理,所有的機器都完成計算後,再將計算結果合併為一個完整的解,這就是所謂的分散式計算。本文我們就來看看MongoDB中MapReduce的使用。
mapReduce
MongoDB中的MapReduce可以用來實作更複雜的聚合指令,使用MapReduce主要實作兩個函數:map函數與reduce函數, map函數用來產生鍵值對序列,map函數的結果作為reduce函數的參數,reduce函數中再做進一步的統計,例如我的資料集如下:
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d7"),"name" : "鲁迅","book" : "呐喊","price" : 38.0,"publisher" : "人民文学出版社"} {"_id" : ObjectId("59fa71d71fd59c3b2cd908d8"),"name" : "曹雪芹","book" : "红楼梦","price" : 22.0,"publisher" : "人民文学出版社"} {"_id" : ObjectId("59fa71d71fd59c3b2cd908d9"),"name" : "钱钟书","book" : "宋诗选注","price" : 99.0,"publisher" : "人民文学出版社"} {"_id" : ObjectId("59fa71d71fd59c3b2cd908da"),"name" : "钱钟书","book" : "谈艺录","price" : 66.0,"publisher" : "三联书店"} {"_id" : ObjectId("59fa71d71fd59c3b2cd908db"),"name" : "鲁迅","book" : "彷徨","price" : 55.0,"publisher" : "花城出版社"}
假如我想查詢每位作者所出的書的總價,操作如下:
var map=function(){emit(this.name,this.price)} var reduce=function(key,value){return Array.sum(value)} var options={out:"totalPrice"} db.sang_books.mapReduce(map,reduce,options); db.totalPrice.find()
emit函數主要用來實現分組,接收兩個參數,第一個參數表示分組的字段,第二個參數表示要統計的數據, reduce來做具體的資料處理操作,接收兩個參數,對應emit方法的兩個參數,這裡使用了Array中的sum函數對price欄位進行自加處理,options中定義了將結果輸出的集合,屆時我們將在這個集合中去查詢數據,預設情況下,這個集合即使在資料庫重啟後也會保留,並且保留集合中的資料。查詢結果如下:
{ "_id" : "曹雪芹", "value" : 22.0 } { "_id" : "钱钟书", "value" : 165.0 } { "_id" : "鲁迅", "value" : 93.0 }
再例如我想查詢每位作者出了幾本書,如下:
var map=function(){emit(this.name,1)} var reduce=function(key,value){return Array.sum(value)} var options={out:"bookNum"} db.sang_books.mapReduce(map,reduce,options); db.bookNum.find()
查詢結果如下:
{ "_id" : "曹雪芹", "value" : 1.0 } { "_id" : "钱钟书", "value" : 2.0 } { "_id" : "鲁迅", "value" : 2.0 }
將每位作者的書列出來,如下:
var map=function(){emit(this.name,this.book)} var reduce=function(key,value){return value.join(',')} var options={out:"books"} db.sang_books.mapReduce(map,reduce,options); db.books.find()
結果如下:
{ "_id" : "曹雪芹", "value" : "红楼梦" } { "_id" : "钱钟书", "value" : "宋诗选注,谈艺录" } { "_id" : "鲁迅", "value" : "呐喊,彷徨" }
例如查詢每個人售價在¥40以上的書:
var map=function(){emit(this.name,this.book)} var reduce=function(key,value){return value.join(',')} var options={query:{price:{$gt:40}},out:"books"} db.sang_books.mapReduce(map,reduce,options); db.books.find()
query表示對查到的集合再進行篩選。
結果如下:
{ "_id" : "钱钟书", "value" : "宋诗选注,谈艺录" } { "_id" : "鲁迅", "value" : "彷徨" }
runCommand實作
我們也可以利用runCommand指令來執行MapReduce。格式如下:
db.runCommand( { mapReduce: <collection>, map: <function>, reduce: <function>, finalize: <function>, out: <output>, query: <document>, sort: <document>, limit: <number>, scope: <document>, jsMode: <boolean>, verbose: <boolean>, bypassDocumentValidation: <boolean>, collation: <document> } )
意義如下:
#參數 | ##意義|
---|---|
表示要操作的集合 | |
map函數 | |
reduce函數 | |
最終處理函數 | |
輸出的集合 | |
對結果過濾 | |
對結果排序 | |
返回的結果數 | |
#設定參數值,這裡設定的值在map 、reduce、finalize函數中可見 | |
是否將map執行的中間資料由javascript對象轉換成BSON對象,預設為false |
##是否繞過文件驗證
#collation
其他一些校對
#如下操作,表示執行MapReduce操作並對統計的集合限制傳回條數,限制返回條數之後再進行統計操作,如下:var map=function(){emit(this.name,this.book)} var reduce=function(key,value){return value.join(',')} db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",limit:4,verbose:true}) db.books.find()
{ "_id" : "曹雪芹", "value" : "红楼梦" } { "_id" : "钱钟书", "value" : "宋诗选注,谈艺录" } { "_id" : "鲁迅", "value" : "呐喊" }
var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue; return obj} var map=function(){emit(this.name,this.book)} var reduce=function(key,value){return value.join(',')} db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1}) db.books.find()
{ "_id" : "曹雪芹", "value" : { "author" : "曹雪芹", "books" : "红楼梦" } } { "_id" : "钱钟书", "value" : { "author" : "钱钟书", "books" : "宋诗选注,谈艺录" } } { "_id" : "鲁迅", "value" : { "author" : "鲁迅", "books" : "呐喊,彷徨" } }
var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue;obj.sang=sang; return obj} var map=function(){emit(this.name,this.book)} var reduce=function(key,value){return value.join(',--'+sang+'--,')} db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1,scope:{sang:"haha"}}) db.books.find()
{ "_id" : "曹雪芹", "value" : { "author" : "曹雪芹", "books" : "红楼梦", "sang" : "haha" } } { "_id" : "钱钟书", "value" : { "author" : "钱钟书", "books" : "宋诗选注,--haha--,谈艺录", "sang" : "haha" } } { "_id" : "鲁迅", "value" : { "author" : "鲁迅", "books" : "呐喊,--haha--,彷徨", "sang" : "haha" } }
以上是MongoDB中MapReduce使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

MetaMask(中文也叫小狐狸錢包)是一款免費的、廣受好評的加密錢包軟體。目前,BTCC已支援綁定MetaMask錢包,綁定後可使用MetaMask錢包進行快速登錄,儲值、買幣等,且首次綁定還可獲得20USDT體驗金。在BTCCMetaMask錢包教學中,我們將詳細介紹如何註冊和使用MetaMask,以及如何在BTCC綁定並使用小狐狸錢包。 MetaMask錢包是什麼? MetaMask小狐狸錢包擁有超過3,000萬用戶,是當今最受歡迎的加密貨幣錢包之一。它可免費使用,可作為擴充功能安裝在網絡

解決 Navicat 過期問題的方法包括:續約授權;卸載並重新安裝;停用自動更新;使用 Navicat Premium Essentials 免費版;聯絡 Navicat 客戶支援。

BitgetLaunchpool是一個為所有加密貨幣愛好者而設計的動態平台。 BitgetLaunchpool以其獨特的產品脫穎而出。在這裡,您可以質押您的代幣來解鎖更多獎勵,包括空投、高額回報,以及專屬早期參與者的豐厚獎金池。什麼是BitgetLaunchpool? BitgetLaunchpool是一個加密貨幣平台,可以透過使用者友善的條款和條件來質押和賺取代幣。透過在Launchpool中投入BGB或其他代幣,用戶有機會獲得免費空投、收益和參與豐厚的獎金池。質押資產的收益在T+1小時內計算,獎勵按

要使用 Navicat 連接 MongoDB,您需要:安裝 Navicat建立 MongoDB 連接:a. 輸入連接名稱、主機位址和連接埠b. 輸入認證資訊(如果需要)新增 SSL 憑證(如果需要)驗證連線儲存連接

.NET 4.0 用於創建各種應用程序,它為應用程式開發人員提供了豐富的功能,包括:物件導向程式設計、靈活性、強大的架構、雲端運算整合、效能最佳化、廣泛的程式庫、安全性、可擴展性、資料存取和行動開發支援。

在無伺服器架構中,Java函數可以與資料庫集成,以存取和操作資料庫中的資料。關鍵步驟包括:建立Java函數、設定環境變數、部署函數和測試函數。透過遵循這些步驟,開發人員可以建立複雜的應用程序,無縫存取儲存在資料庫中的資料。

本文介紹如何在Debian系統上構建高可用性的MongoDB數據庫。我們將探討多種方法,確保數據安全和服務持續運行。關鍵策略:副本集(ReplicaSet):利用副本集實現數據冗餘和自動故障轉移。當主節點出現故障時,副本集會自動選舉新的主節點,保證服務的持續可用性。數據備份與恢復:定期使用mongodump命令進行數據庫備份,並製定有效的恢復策略,以應對數據丟失風險。監控與報警:部署監控工具(如Prometheus、Grafana)實時監控MongoDB的運行狀態,並

本文介紹如何在Debian系統上配置MongoDB實現自動擴容,主要步驟包括MongoDB副本集的設置和磁盤空間監控。一、MongoDB安裝首先,確保已在Debian系統上安裝MongoDB。使用以下命令安裝:sudoaptupdatesudoaptinstall-ymongodb-org二、配置MongoDB副本集MongoDB副本集確保高可用性和數據冗餘,是實現自動擴容的基礎。啟動MongoDB服務:sudosystemctlstartmongodsudosys
