本文主要介紹了基於canvas使用貝塞爾曲線平滑擬合折線段的方法的相關資料,小編覺得挺不錯的,現在分享給大家,也給大家做個參考。一起跟著小編過來看看吧,希望能幫助大家。
寫在最前
本次分享一下在canvas中將繪製出來的折線段的棱角“磨平”,也就是通過貝塞爾曲線穿過各個描點來代替原有的折線圖。
為什麼要平滑擬合折線段
先來看下Echarts下折線圖的渲染效果:
一開始我沒注意到其實這個折線段是曲線穿過去的,只認為是單純的描點繪圖,所以起初我實現的「簡(醜)易(陋)」版本是這樣的:
不要專注於樣式,重點就是實現之後才發現看起來人家Echarts的實現描點非常的圓滑,也由此引發了之後的探討。怎麼有規律的畫平滑曲線?
效果圖
先來看下最終模仿的實作:
因為我也不知道Echarts內部怎麼實現的(逃
#
看起來已經非常圓潤了,和我們最初的設想十分接近了。
好的!結果很明顯現在來重新看下我們的實作方式。
#貝塞爾曲線平滑擬合 模擬資料var data = [Math.random() * 300]; for (var i = 1; i < 50; i++) { //按照echarts data.push(Math.round((Math.random() - 0.5) * 20 + data[i - 1])); } option = { canvas:{ id: 'canvas' }, series: { name: '模拟数据', itemStyle: { color: 'rgb(255, 70, 131)' }, areaStyle: { color: 'rgb(255, 158, 68)' }, data: data } };
先初始化一個建構子來放置需要用到的資料:
function LinearGradient(option) { this.canvas = document.getElementById(option.canvas.id) this.ctx = this.canvas.getContext('2d') this.width = this.canvas.width this.height = this.canvas.height this.tooltip = option.tooltip this.title = option.text this.series = option.series //存放模拟数据 }
LinearGradient.prototype.draw1 = function() { //折线参考线 ... //要考虑到canvas中的原点是左上角, //所以下面要做一些换算, //diff为x,y轴被数据最大值和最小值的取值范围所平分的等份。 this.series.data.forEach(function(item, index) { var x = diffX * index, y = Math.floor(self.height - diffY * (item - dataMin)) self.ctx.lineTo(x, y) //绘制各个数据点 }) ... }
貝塞爾曲線的關鍵點在於控制點的選擇,這個網站可以動態的展現控制點不同而繪製的不同的曲線。而對於控制點的計算。具體演算法有興趣的同學可以深入了解下,現在直接說下計算控制點的結論。
上面的公式涉及四個座標點,當前點,前一個點以及後兩個點,而當座標值為下圖展示的時候繪製出來的曲線如下所示:
不過會有一個問題就是起始點和最後一個點不能用這個公式,不過那篇文章也給了邊界值的處理辦法:
所以在將折線換成平滑曲線的時候,將邊界值以及其他控制點計算好之後代入到貝塞爾函數中就完成了:
//核心实现 this.series.data.forEach(function(item, index) { //找到前一个点到下一个点中间的控制点 var scale = 0.1 //分别对于ab控制点的一个正数,可以分别自行调整 var last1X = diffX * (index - 1), last1Y = Math.floor(self.height - diffY * (self.series.data[index - 1] - dataMin)), //前一个点坐标 last2X = diffX * (index - 2), last2Y = Math.floor(self.height - diffY * (self.series.data[index - 2] - dataMin)), //前两个点坐标 nowX = diffX * (index), nowY = Math.floor(self.height - diffY * (self.series.data[index] - dataMin)), //当期点坐标 nextX = diffX * (index + 1), nextY = Math.floor(self.height - diffY * (self.series.data[index + 1] - dataMin)), //下一个点坐标 cAx = last1X + (nowX - last2X) * scale, cAy = last1Y + (nowY - last2Y) * scale, cBx = nowX - (nextX - last1X) * scale, cBy = nowY - (nextY - last1Y) * scale if(index === 0) { self.ctx.lineTo(nowX, nowY) return } else if(index ===1) { cAx = last1X + (nowX - 0) * scale cAy = last1Y + (nowY - self.height) * scale } else if(index === self.series.data.length - 1) { cBx = nowX - (nowX - last1X) * scale cBy = nowY - (nowY - last1Y) * scale } self.ctx.bezierCurveTo(cAx, cAy, cBx, cBy, nowX, nowY); //绘制出上一个点到当前点的贝塞尔曲线 })
相關推薦:
canvas實作高階貝塞爾曲線
使用CSS做貝塞爾曲線
貝塞爾曲線的應用詳解
以上是canvas使用貝塞爾曲線平滑擬合折線段的方法詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!