用於大數據處理的高效能運算採用的4個步驟
如果企業需要採用處理其大數據的高效能運算,在內部部署營運可能效果最佳。以下是企業需要了解的內容,其中包括高效能運算和Hadoop的不同之處。
在大數據領域,並非每家公司都需要高效能運算(HPC),但幾乎所有使用大數據的企業都採用了Hadoop式分析運算。
HPC和Hadoop之間的差異很難區分,因為可以在高效能運算(HPC)裝置上執行Hadoop分析作業,但反之亦然。 HPC和Hadoop分析都使用平行資料處理,但在Hadoop 和分析環境中,資料儲存在硬體上,並分佈在該硬體的多個節點上。在高效能運算(HPC)中,資料檔案的大小要大得多,資料儲存集中。高效能運算(HPC)由於其檔案體積龐大,還需要更昂貴的網路通訊(如InfiniBand),因此需要高吞吐量和低延遲。
企業資訊長的目的很明確:如果企業可以避免使用HPC並且只將Hadoop用於分析,可以執行此操作。這種方式成本更低,更容易員工操作,甚至可以在雲端運行,其他公司(如第三方供應商)可以運行它。
不幸的是,對於需要高效能運算(HPC)進行處理的生命科學、氣象、製藥、採礦、醫療、政府、學術的企業和機構來說,全部採用Hadoop是不可能的。由於文件規模較大,處理需求極為嚴格,採用資料中心或與採用雲端運算都不是很好的方案。
簡而言之,高效能運算(HPC)是一個在資料中心內部運作的大數據平台的完美範例。正因為如此,企業如何確保其投資巨大的硬體完成所需的工作成為了一個挑戰。
大數據Hadoop和HPC平台供應商PSCC Labs首席策略長Alex Lesser表示:「這是必須使用HPC來處理其大數據的許多公司面臨的挑戰。大多數這些公司都有支援傳統IT基礎設施,他們自然地採用了這種思路,自己構建Hadoop分析計算環境,因為這使用了他們已經熟悉的商用硬件,但是對於高性能計算(HPC)來說,其響應通常是讓供應商來處理。 ##企業的高階主管和董事會成員不一定要求是高效能運算領域的專家,但絕不能沒有他們的理解和支持。這些管理人員都應該對高效能運算(HPC)有足夠的了解,以及可以為企業明確支援可能製定的大規模硬體、軟體和培訓投資。這意味著他們必須在兩個方面受到教育:(1)HPC是什麼,為什麼它與普通分析不同,需要採用特殊的硬體和軟體。 (2)為什麼企業需要使用HPC而不是原有的分析來實現其業務目標。這兩項教育工作都應由首席資訊長(CIO)或首席開發官(CDO)負責。
Lesser表示:「採用HPC的最積極的公司是那些相信他們真正的科技公司,他們指的是亞馬遜AWS雲端服務,最初只是亞馬遜公司的零售業務,現在已成為一個龐大的利潤中心。 「我們有一個基於HPC最佳實踐的基本軟體包,可以與客戶一起根據客戶的計算需求定制這個基礎軟體包。」Lesser說,他指出幾乎每個數據中心都必須進行一些定制。
3.了解回報
與任何IT投資一樣,HPC必須符合成本效益,並且企業應該能夠獲得投資回報(ROI),這一點在管理層和董事會的頭腦中已經闡明。 「一個很好的例子是飛機設計。」Lesser說。 「高效能運算(HPC)的投資規模很大,但是當公司發現它可以使用HPC進行設計模擬並獲得5個9的準確性,並且不再需要租用物理風洞時,就會很快收回了HPC投資。定位以實現自給自足。
最初,企業可能需要聘請外部顧問人員才能開始工作。但諮詢任務的目標應始終是雙重目標:(1)讓HPC應用程式繼續運行,(2)將知識傳授給員工,以便他們能夠接管操作。企業不應該滿足於此。
HPC團隊的核心是需要一名資料科學家,他能夠開發高效能運算所需的高度複雜的演算法來回答企業的問題。它還需要一名精通C +或Fortran技能,並能夠在並行處理環境中工作的強大系統的程式設計師,或是網路通訊專家。
「最重要的是,如果企業每兩週要運行一次或兩次工作,就應該到雲端來承載其HPC。」Lesser說,「但是如果企業正在使用HPC資源和運行作業,如製藥公司或生物學公司可能每天多次運行,那麼在雲端運行就會浪費資金,應該考慮運行自己的內部操作。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

資料處理利器:Pandas讀取SQL資料庫中的數據,需要具體程式碼範例隨著資料量的不斷增長和複雜性的提高,資料處理成為了現代社會中一個重要的環節。在資料處理過程中,Pandas成為了許多資料分析師和科學家的首選工具之一。本文將介紹如何使用Pandas函式庫來讀取SQL資料庫中的數據,並提供一些具體的程式碼範例。 Pandas是基於Python的一個強大的數據處理和分

推薦適合地理資訊科學專業學生用的電腦1.推薦2.地理資訊科學專業學生需要處理大量的地理資料和進行複雜的地理資訊分析,因此需要一台性能較強的電腦。一台配置高的電腦可以提供更快的處理速度和更大的儲存空間,並且能夠更好地滿足專業需求。 3.建議選擇一台配備高效能處理器和大容量記憶體的電腦,這樣可以提高資料處理和分析的效率。此外,選擇一台具備較大儲存空間和高解析度顯示器的電腦也能更好地展示地理資料和結果。另外,考慮到地理資訊科學專業學生可能需要進行地理資訊系統(GIS)軟體的開發和編程,選擇一台支援較好的圖形處

PHP和WebSocket:建立高效能的即時應用程式隨著網路的發展和用戶需求的提升,即時應用程式變得越來越普遍。而傳統的HTTP協定在處理即時資料時會有一些限制,例如需要頻繁的輪詢或長輪詢方式來取得最新的資料。為了解決這個問題,WebSocket應運而生。 WebSocket是一種先進的通訊協議,它提供了雙向通訊的能力,允許瀏覽器和伺服器之間即時發送和接

Golang透過並發性、高效能記憶體管理、原生資料結構和豐富的第三方函式庫,提升資料處理效率。具體優勢包括:並行處理:協程支援同時執行多個任務。高效率記憶體管理:垃圾回收機制自動管理記憶體。高效資料結構:切片、映射和通道等資料結構快速存取和處理資料。第三方函式庫:涵蓋fasthttp和x/text等各種資料處理庫。

C++是一種高效能的程式語言,可以為開發人員提供靈活性和可擴充性。尤其在大規模資料處理場景下,C++的高效率和快速運算速度是非常重要的。本文將介紹一些最佳化C++程式碼的技巧,以因應大規模資料處理需求。使用STL容器取代傳統數組在C++程式設計中,數組是常用的資料結構之一。但是,在大規模資料處理中,使用STL容器,如vector,deque,list和set等,可以更

使用Redis提升Laravel應用的資料處理效率隨著網路應用的不斷發展,資料處理效率成為了開發者關注的重點之一。在開發基於Laravel框架的應用時,我們可以藉助Redis來提升資料處理效率,實現資料的快速存取和快取。本文將介紹如何使用Redis在Laravel應用中進行資料處理,並提供具體的程式碼範例。一、Redis簡介Redis是一種高效能的記憶體數據

隨著數據處理的日益普及,越來越多人開始關注如何有效利用數據,讓數據為自己所用的。而在日常的資料處理中,Excel表格無疑是最常見的一種資料格式。然而,當需要處理大量資料時,手動操作Excel顯然會變得十分費時費力。因此,本文將介紹一個高效率的資料處理利器-pandas,以及如何利用該工具快速讀取Excel檔案並進行資料處理。一、pandas簡介pandas

比較Laravel和CodeIgniter的資料處理能力:ORM:Laravel使用EloquentORM,提供類別物件關係映射,而CodeIgniter使用ActiveRecord,將資料庫模型表示為PHP類別的子類別。查詢建構器:Laravel具有靈活的鍊式查詢API,而CodeIgniter的查詢建構器更簡單,基於陣列。資料驗證:Laravel提供了一個Validator類,支援自訂驗證規則,而CodeIgniter的驗證功能內建較少,需要手動編碼自訂規則。實戰案例:用戶註冊範例展示了Lar