用JS實作排序演算法
這次帶給大家用JS實作排序演算法,用JS實作排序演算法注意事項有哪些,以下就是實戰案例,一起來看一下。
一些常用js排序演算法實現,非原創,用於記錄
時間複雜度:O(n^2) ;
最快:資料是正序時
最慢:資料是反序時
function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len; i++) { for (var j = 0; j < len - 1 - i; i++) { // 相邻元素两两对比,元素交换 if (arr[j] > arr[j + 1]) { var temp = arr[j + 1]; arr[j + 1] = arr[j]; arr[j] = temp; } } } return arr; }
時間複雜度:O(n ^2)
最穩定排序演算法
function selectionSort(arr) { var len = arr.length; var minIndex, temp; // 寻找最小的数,将索引保存 for (var i = 0; i < len - 1; i++) { minIndex = i; for (var j = i + 1; j < len; j++) { if (arr[j] < arr[minIndex]) { minIndex = j; } } temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } return arr; }
插入排序
時間複雜度:O(n^2);
撲克排序
function insertionSort(arr) { var len = arr.length; var preIndex, current; for (var i = 1; i < len; i++) { preIndex = i - 1; current = arr[i]; while (preIndex >= 0 && arr[preIndex] > current) { arr[preIndex + 1] = arr[preIndex]; preIndex--; } arr[preIndex + 1] = current; } return arr; }
希爾排序
時間複雜度:O(n log n);
function shellSort(arr) { var len = arr.length, temp, gap = 1; //动态定义间隔序列 while (gap < len / 3) { gap = gap * 3 + 1; } for (gap; gap > 0; gap = Math.floor(gap / 3)) { for (var i = gap; i < len; i++) { temp = arr[i]; for (var j = i - gap; j >= 0 && arr[j] > temp; j -= gap) { arr[j + gap] = arr[j]; } arr[j + gap] = temp; } } return arr; }
歸併排序
時間複雜度:O(n log n);
function mergeSort(arr) { var len = arr.length; if (len < 2) { return arr; } var middle = Math.floor(len / 2), left = arr.slice(0, middle), right = arr.slice(middle); return merge(mergeSort(left), mergeSort(right)); function merge(left, right) { var result = []; while (left.length && right.length) { if (left[0] <= right[0]) { result.push(left.shift()); } else { result.push(right.shift()); } } while (left.length) result.push(left.shift()); while (right.length) result.push(right.shift()); return result; } }
相信看了本文案例你已經掌握了方法,更多精彩請關注php中文網其它相關文章!
推薦閱讀:
以上是用JS實作排序演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

寫在前面&筆者的個人理解目前,在整個自動駕駛系統當中,感知模組扮演了其中至關重要的角色,行駛在道路上的自動駕駛車輛只有通過感知模組獲得到準確的感知結果後,才能讓自動駕駛系統中的下游規控模組做出及時、正確的判斷和行為決策。目前,具備自動駕駛功能的汽車中通常會配備包括環視相機感測器、光達感測器以及毫米波雷達感測器在內的多種數據資訊感測器來收集不同模態的信息,用於實現準確的感知任務。基於純視覺的BEV感知演算法因其較低的硬體成本和易於部署的特點,以及其輸出結果能便捷地應用於各種下游任務,因此受到工業

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

C++sort函數底層採用歸併排序,其複雜度為O(nlogn),並提供不同的排序演算法選擇,包括快速排序、堆排序和穩定排序。

人工智慧(AI)與執法領域的融合為犯罪預防和偵查開啟了新的可能性。人工智慧的預測能力被廣泛應用於CrimeGPT(犯罪預測技術)等系統,用於預測犯罪活動。本文探討了人工智慧在犯罪預測領域的潛力、目前的應用情況、所面臨的挑戰以及相關技術可能帶來的道德影響。人工智慧和犯罪預測:基礎知識CrimeGPT利用機器學習演算法來分析大量資料集,識別可以預測犯罪可能發生的地點和時間的模式。這些資料集包括歷史犯罪統計資料、人口統計資料、經濟指標、天氣模式等。透過識別人類分析師可能忽視的趨勢,人工智慧可以為執法機構

01前景概要目前,難以在檢測效率和檢測結果之間取得適當的平衡。我們研究了一種用於高解析度光學遙感影像中目標偵測的增強YOLOv5演算法,利用多層特徵金字塔、多重偵測頭策略和混合注意力模組來提高光學遙感影像的目標偵測網路的效果。根據SIMD資料集,新演算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在偵測結果和速度之間達到了更好的平衡。 02背景&動機隨著遠感技術的快速發展,高解析度光學遠感影像已被用於描述地球表面的許多物體,包括飛機、汽車、建築物等。目標檢測在遠感影像的解釋中

在我們的工作中,常常會用到wps軟體,wps軟體處理資料的方式方法是非常多的,而且函數功能也是非常強大的,我們常用函數來求平均值,求總和等,可以說只要是統計數據能用的方法,wps軟體庫裡都已經為大家準備好了,下面我們要介紹的是wps怎麼排序成績高低的操作步驟,看完以後大家可以藉鑑經驗。 1.先開啟需要排名的表格。如下圖所示。 2、然後輸入公式=rank(B2,B2:B5,0),一定要輸入0。如下圖所示。 3、輸入完公式以後,按下電腦鍵盤上的F4鍵,這一步驟操作是為了讓相對引用變成絕對引用。

一、58畫像平台建置背景首先和大家分享下58畫像平台的建造背景。 1.傳統的畫像平台傳統的想法已經不夠,建立用戶畫像平台依賴數據倉儲建模能力,整合多業務線數據,建構準確的用戶畫像;還需要數據挖掘,理解用戶行為、興趣和需求,提供演算法側的能力;最後,還需要具備數據平台能力,有效率地儲存、查詢和共享用戶畫像數據,提供畫像服務。業務自建畫像平台和中台類型畫像平台主要區別在於,業務自建畫像平台服務單條業務線,按需定制;中台平台服務多條業務線,建模複雜,提供更為通用的能力。 2.58中台畫像建構的背景58的使用者畫像

WPS是一款功能非常完善的辦公室軟體,其中包含文字編輯、資料表、PPT簡報、PDF格式、流程圖等功能。其中我們使用最多的就是文字、表格、演示,也是我們最熟悉的。我們在學習工作中,有時會使用WPS表格製作一些數據統計,例如學校裡會對每個學生的成績進行統計,那麼多的學生如果我們要透過手動進行學生成績排序的話,那真是讓人頭疼,其實我們可以不必煩心,因為我們的WPS表格中有排序這個功能為我們解決這個問題。接下來我們就一起學習WPS怎麼排序的方法。方法步驟:第一步:首先我們要開啟需要排序的WPS表格
