我們知道,線程池幫我們重複管理線程,避免創建大量的線程增加開銷。
合理的使用執行緒池能夠帶來3個很明顯的好處:
1.降低資源消耗:透過重複使用已經建立的執行緒來降低執行緒建立和銷毀的消耗
2.提高回應速度:任務到達時不需要等待執行緒創建就可以立即執行。
3.提高執行緒的可管理性:執行緒池可以統一管理、分配、調優和監控。
java來源生的執行緒池,實作於ThreadPoolExecutor類,這也是我們今天討論的重點
Jdk使用ThreadPoolExecutor類別來建立執行緒池,我們來看看它的構造方法。
/** * Creates a new {@code ThreadPoolExecutor} with the given initial * parameters. * * @param corePoolSize the number of threads to keep in the pool, even * if they are idle, unless {@code allowCoreThreadTimeOut} is set * @param maximumPoolSize the maximum number of threads to allow in the * pool * @param keepAliveTime when the number of threads is greater than * the core, this is the maximum time that excess idle threads * will wait for new tasks before terminating. * @param unit the time unit for the {@code keepAliveTime} argument * @param workQueue the queue to use for holding tasks before they are * executed. This queue will hold only the {@code Runnable} * tasks submitted by the {@code execute} method. * @param threadFactory the factory to use when the executor * creates a new thread * @param handler the handler to use when execution is blocked * because the thread bounds and queue capacities are reached * @throws IllegalArgumentException if one of the following holds:<br> * {@code corePoolSize < 0}<br> * {@code keepAliveTime < 0}<br> * {@code maximumPoolSize <= 0}<br> * {@code maximumPoolSize < corePoolSize} * @throws NullPointerException if {@code workQueue} * or {@code threadFactory} or {@code handler} is null */ public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
int corePoolSize, //核心執行緒的數量
int maximumPoolSize, //最大執行緒數
ThreadFactory threadFactory, //創建新線程使用的工廠
RejectedExecutionHandler handler // 當任務無法執行時的處理器(線程拒絕策略)
核心類別變數
ThreadPoolExecutor中有一個控制狀態的屬性叫ctl,它是一個AtomicInteger類型的變量,它一個int值可以儲存兩個概念的資訊:
workerCount:表示目前池中有效的執行緒數,透過workerCountOf方法獲得,workerCount上限是(2^29)-1。 (最後存放在ctl的低29bit)
RUNNING:可以新加線程,同時可以處理queue中的執行緒。
STOP 不增加新線程,同時不處理queue中的線程。
TIDYING 所有的執行緒都終止了(queue中),同時workerCount為0,那麼此時進入TIDYING
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); private static final int COUNT_BITS = Integer.SIZE - 3; private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl private static int runStateOf(int c) { return c & ~CAPACITY; } private static int workerCountOf(int c) { return c & CAPACITY; } private static int ctlOf(int rs, int wc) { return rs | wc; }
RUNNING: 111
00000000000000000000000000000000
#SHUTDOWN: ##STOP:
001
0000000000000000000000000000
#TIDYING: 00 010
#TIDYING: ATED:
011而ThreadPoolExecutor是透過runStateOf和workerCountOf得到者兩個概念的值的。
CAPACITY=(1 << COUNT_BITS) – 1 轉換為二進位為:000 11111111111111111111111111111,他是最大執行緒理論上可以允許的最大執行緒池的線程數。
所以很明顯,它的重點在於,其高3bit為0,低29bit為1;###這樣,workderCountOf方法中,CAPACITY和ctl進行&運算時,它能獲得高3位都是0,低29位和ctl低29位相同的值,###這個值就是workerCount###;###同理,runStateOf方法,CAPACITY的取反和ctl進行&操作,得到高3位和ctl高三位相等等,低29位元都為0的值,###這個值就是runState###;######workQueue###/** * The queue used for holding tasks and handing off to worker * threads. We do not require that workQueue.poll() returning * null necessarily means that workQueue.isEmpty(), so rely * solely on isEmpty to see if the queue is empty (which we must * do for example when deciding whether to transition from * SHUTDOWN to TIDYING). This accommodates special-purpose * queues such as DelayQueues for which poll() is allowed to * return null even if it may later return non-null when delays * expire. */ private final BlockingQueue<Runnable> workQueue;
/** * Set containing all worker threads in pool. Accessed only when * holding mainLock. */ private final HashSet<Worker> workers = new HashSet<Worker>();
/** * Class Worker mainly maintains interrupt control state for * threads running tasks, along with other minor bookkeeping. * This class opportunistically extends AbstractQueuedSynchronizer * to simplify acquiring and releasing a lock surrounding each * task execution. This protects against interrupts that are * intended to wake up a worker thread waiting for a task from * instead interrupting a task being run. We implement a simple * non-reentrant mutual exclusion lock rather than use * ReentrantLock because we do not want worker tasks to be able to * reacquire the lock when they invoke pool control methods like * setCorePoolSize. Additionally, to suppress interrupts until * the thread actually starts running tasks, we initialize lock * state to a negative value, and clear it upon start (in * runWorker). */ private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { //设置AQS的同步状态private volatile int state,是一个计数器,大于0代表锁已经被获取 // 在调用runWorker()前,禁止interrupt中断,在interruptIfStarted()方法中会判断 getState()>=0 setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this);//根据当前worker创建一个线程对象 //当前worker本身就是一个runnable任务,也就是不会用参数的firstTask创建线程,而是调用当前worker.run()时调用firstTask.run() //后面在addworker中,我们会启动worker对象中组合的Thread,而我们的执行逻辑runWorker方法是在worker的run方法中被调用。 //为什么执行thread的run方法会调用worker的run方法呢,原因就是在这里进行了注入,将worker本身this注入到了thread中 } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); }//runWorker()是ThreadPoolExecutor的方法 // Lock methods // // The value 0 represents the unlocked state. 0代表“没被锁定”状态 // The value 1 represents the locked state. 1代表“锁定”状态 protected boolean isHeldExclusively() { return getState() != 0; } /** * 尝试获取锁 * 重写AQS的tryAcquire(),AQS本来就是让子类来实现的 */ protected boolean tryAcquire(int unused) { //尝试一次将state从0设置为1,即“锁定”状态,但由于每次都是state 0->1,而不是+1,那么说明不可重入 //且state==-1时也不会获取到锁 if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } /** * 尝试释放锁 * 不是state-1,而是置为0 */ protected boolean tryRelease(int unused) { setExclusiveOwnerThread(null); setState(0); return true; } public void lock() { acquire(1); } public boolean tryLock() { return tryAcquire(1); } public void unlock() { release(1); } public boolean isLocked() { return isHeldExclusively(); } /** * 中断(如果运行) * shutdownNow时会循环对worker线程执行 * 且不需要获取worker锁,即使在worker运行时也可以中断 */ void interruptIfStarted() { Thread t; //如果state>=0、t!=null、且t没有被中断 //new Worker()时state==-1,说明不能中断 if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } } } }
我们看worker类时,会发现最重要的几个部分在于它里面定义了一个Thread thread和Runnable firstTask。看到这里,我们可能会比较奇怪,我们只是要一个可以执行的线程,这里放一个Thread和一个Runnable的变量做什么呢?
其实之所以Worker自己实现Runnable,并创建Thread,在firstTask外包一层,是因为要通过Worker负责控制中断,而firstTask这个工作任务只是负责执行业务,worker的run方法调用了runWorker方法,在这里面,worker里的firstTask的run方法被执行。稍后我们会聚焦这个执行任务的runWorker方法。
好了,基本上我们将线程池的几个主角,ctl,workQueue,workers,Worker简单介绍了一遍,现在,我们来看看线程池是怎么玩的。
这是线程池实现类外露供给外部实现提交线程任务command的核心方法,对于无需了解线程池内部的使用者来说,这个方法就是把某个任务交给线程池,正常情况下,这个任务会在未来某个时刻被执行,实现和注释如下:
/** * Executes the given task sometime in the future. The task * may execute in a new thread or in an existing pooled thread. * * 在未来的某个时刻执行给定的任务。这个任务用一个新线程执行,或者用一个线程池中已经存在的线程执行 * * If the task cannot be submitted for execution, either because this * executor has been shutdown or because its capacity has been reached, * the task is handled by the current {@code RejectedExecutionHandler}. * 如果任务无法被提交执行,要么是因为这个Executor已经被shutdown关闭,要么是已经达到其容量上限,任务会被当前的RejectedExecutionHandler处理 * * @param command the task to execute * @throws RejectedExecutionException at discretion of * {@code RejectedExecutionHandler}, if the task * cannot be accepted for execution * @throws NullPointerException if {@code command} is null */
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * 如果运行的线程少于corePoolSize,尝试开启一个新线程去运行command,command作为这个线程的第一个任务 * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * 如果任务成功放入队列,我们仍需要一个双重校验去确认是否应该新建一个线程(因为可能存在有些线程在我们上次检查后死了) * 或者 从我们进入这个方法后,pool被关闭了 * 所以我们需要再次检查state,如果线程池停止了需要回滚入队列,如果池中没有线程了,新开启 一个线程 * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. * 如果无法将任务入队列(可能队列满了),需要新开区一个线程(自己:往maxPoolSize发展) * 如果失败了,说明线程池shutdown 或者 饱和了,所以我们拒绝任务 */ int c = ctl.get(); // 1、如果当前线程数少于corePoolSize(可能是由于addWorker()操作已经包含对线程池状态的判断,如此处没加,而入workQueue前加了) if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; /** * 没有成功addWorker(),再次获取c(凡是需要再次用ctl做判断时,都会再次调用ctl.get()) * 失败的原因可能是: * 1、线程池已经shutdown,shutdown的线程池不再接收新任务 * 2、workerCountOf(c) < corePoolSize 判断后,由于并发,别的线程先创建了worker线程,导致workerCount>=corePoolSize */ c = ctl.get(); } /** * 2、如果线程池RUNNING状态,且入队列成功 */ if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); /** * 再次校验放入workerQueue中的任务是否能被执行 * 1、如果线程池不是运行状态了,应该拒绝添加新任务,从workQueue中删除任务 * 2、如果线程池是运行状态,或者从workQueue中删除任务失败(刚好有一个线程执行完毕,并消耗了这个任务), * 确保还有线程执行任务(只要有一个就够了) */ //如果再次校验过程中,线程池不是RUNNING状态,并且remove(command)--workQueue.remove()成功,拒绝当前command if (! isRunning(recheck) && remove(command)) reject(command); //如果当前worker数量为0,通过addWorker(null, false)创建一个线程,其任务为null //为什么只检查运行的worker数量是不是0呢?? 为什么不和corePoolSize比较呢?? //只保证有一个worker线程可以从queue中获取任务执行就行了?? //因为只要还有活动的worker线程,就可以消费workerQueue中的任务 else if (workerCountOf(recheck) == 0) addWorker(null, false);//第一个参数为null,说明只为新建一个worker线程,没有指定firstTask ////第二个参数为true代表占用corePoolSize,false占用maxPoolSize } /** * 3、如果线程池不是running状态 或者 无法入队列 * 尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,拒绝当前command */ else if (!addWorker(command, false)) reject(command); }
我们可以简单归纳如下(注:图来源见水印,谢谢大神的归纳):
在execute方法中,我们看到核心的逻辑是由addWorker方法来实现的,当我们将一个任务提交给线程池,线程池会如何处理,就是主要由这个方法加以规范:
该方法有两个参数:
firstTask: worker线程的初始任务,可以为空
core: true:将corePoolSize作为上限,false:将maximumPoolSize作为上限
排列组合,addWorker方法有4种传参的方式:
1、addWorker(command, true) 2、addWorker(command, false) 3、addWorker(null, false) 4、addWorker(null, true)
在execute方法中就使用了前3种,结合这个核心方法进行以下分析
第一个:线程数小于corePoolSize时,放一个需要处理的task进Workers Set。如果Workers Set长度超过corePoolSize,就返回false 第二个:当队列被放满时,就尝试将这个新来的task直接放入Workers Set,而此时Workers Set的长度限制是maximumPoolSize。如果线程池也满了的话就返回false 第三个:放入一个空的task进workers Set,长度限制是maximumPoolSize。这样一个task为空的worker在线程执行的时候会去任务队列里拿任务,这样就相当于创建了一个新的线程,只是没有马上分配任务 第四个:这个方法就是放一个null的task进Workers Set,而且是在小于corePoolSize时,如果此时Set中的数量已经达到corePoolSize那就返回false,什么也不干。实际使用中是在prestartAllCoreThreads()方法,这个方法用来为线程池预先启动corePoolSize个worker等待从workQueue中获取任务执行
/** * Checks if a new worker can be added with respect to current * pool state and the given bound (either core or maximum). If so, * the worker count is adjusted accordingly, and, if possible, a * new worker is created and started, running firstTask as its * first task. This method returns false if the pool is stopped or * eligible to shut down. It also returns false if the thread * factory fails to create a thread when asked. If the thread * creation fails, either due to the thread factory returning * null, or due to an exception (typically OutOfMemoryError in * Thread.start()), we roll back cleanly. * 检查根据当前线程池的状态和给定的边界(core or maximum)是否可以创建一个新的worker * 如果是这样的话,worker的数量做相应的调整,如果可能的话,创建一个新的worker并启动,参数中的firstTask作为worker的第一个任务 * 如果方法返回false,可能因为pool已经关闭或者调用过了shutdown * 如果线程工厂创建线程失败,也会失败,返回false * 如果线程创建失败,要么是因为线程工厂返回null,要么是发生了OutOfMemoryError * * @param firstTask the task the new thread should run first (or * null if none). Workers are created with an initial first task * (in method execute()) to bypass queuing when there are fewer * than corePoolSize threads (in which case we always start one), * or when the queue is full (in which case we must bypass queue). * Initially idle threads are usually created via * prestartCoreThread or to replace other dying workers. * * @param core if true use corePoolSize as bound, else * maximumPoolSize. (A boolean indicator is used here rather than a * value to ensure reads of fresh values after checking other pool * state). * @return true if successful */ private boolean addWorker(Runnable firstTask, boolean core) { //外层循环,负责判断线程池状态 retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. /** * 线程池的state越小越是运行状态,runnbale=-1,shutdown=0,stop=1,tidying=2,terminated=3 * 1、如果线程池state已经至少是shutdown状态了 * 2、并且以下3个条件任意一个是false * rs == SHUTDOWN (隐含:rs>=SHUTDOWN)false情况: 线程池状态已经超过shutdown, * 可能是stop、tidying、terminated其中一个,即线程池已经终止 * firstTask == null (隐含:rs==SHUTDOWN)false情况: firstTask不为空,rs==SHUTDOWN 且 firstTask不为空, * return false,场景是在线程池已经shutdown后,还要添加新的任务,拒绝 * ! workQueue.isEmpty() (隐含:rs==SHUTDOWN,firstTask==null)false情况: workQueue为空, * 当firstTask为空时是为了创建一个没有任务的线程,再从workQueue中获取任务, * 如果workQueue已经为空,那么就没有添加新worker线程的必要了 * return false,即无法addWorker() */ if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; //内层循环,负责worker数量+1 for (;;) { int wc = workerCountOf(c); //入参core在这里起作用,表示加入的worker是加入corePool还是非corepool,换句话说,受到哪个size的约束 //如果worker数量>线程池最大上限CAPACITY(即使用int低29位可以容纳的最大值) //或者( worker数量>corePoolSize 或 worker数量>maximumPoolSize ),即已经超过了给定的边界,不添加worker if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //CAS尝试增加线程数,,如果成功加了wc,那么break跳出检查 //如果失败,证明有竞争,那么重新到retry。 if (compareAndIncrementWorkerCount(c)) break retry; //如果不成功,重新获取状态继续检查 c = ctl.get(); // Re-read ctl //如果状态不等于之前获取的state,跳出内层循环,继续去外层循环判断 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop // else CAS失败时因为workerCount改变了,继续内层循环尝试CAS对worker数量+1 } } //worker数量+1成功的后续操作 // 添加到workers Set集合,并启动worker线程 boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { //新建worker//构造方法做了三件事//1、设置worker这个AQS锁的同步状态state=-1 w = new Worker(firstTask); //2、将firstTask设置给worker的成员变量firstTask //3、使用worker自身这个runnable,调用ThreadFactory创建一个线程,并设置给worker的成员变量thread final Thread t = w.thread; if (t != null) { //获取重入锁,并且锁上 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { int rs = runStateOf(ctl.get()); // rs!=SHUTDOWN ||firstTask!=null // 如果线程池在运行running<shutdown 或者 // 线程池已经shutdown,且firstTask==null(可能是workQueue中仍有未执行完成的任务,创建没有初始任务的worker线程执行) // worker数量-1的操作在addWorkerFailed() if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // // precheck that t is startable 线程已经启动,抛非法线程状态异常 throw new IllegalThreadStateException(); workers.add(w); //设置最大的池大小largestPoolSize,workerAdded设置为true int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) {//如果往HashSet中添加worker成功,启动线程 //通过t.start()方法正式执行线程。在这里一个线程才算是真正的执行起来了。 t.start(); workerStarted = true; } } } finally { //如果启动线程失败 if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
同样的,我们可以归纳一下:
在addWorker方法中,我们将一个新增进去的worker所组合的线程属性thread启动了,但我们知道,在worker的构造方法中,它将自己本身注入到了thread的target属性里,所以绕了一圈,线程启动后,调用的还是worker的run方法,而在这里面,runWorker定义了线程执行的逻辑:
/** * Main worker run loop. Repeatedly gets tasks from queue and * executes them, while coping with a number of issues: * * 1. We may start out with an initial task, in which case we * don't need to get the first one. Otherwise, as long as pool is * running, we get tasks from getTask. If it returns null then the * worker exits due to changed pool state or configuration * parameters. Other exits result from exception throws in * external code, in which case completedAbruptly holds, which * usually leads processWorkerExit to replace this thread. * 我们可能使用一个初始化任务开始,即firstTask为null * 然后只要线程池在运行,我们就从getTask()获取任务 * 如果getTask()返回null,则worker由于改变了线程池状态或参数配置而退出 * 其它退出因为外部代码抛异常了,这会使得completedAbruptly为true,这会导致在processWorkerExit()方法中替换当前线程 * * 2. Before running any task, the lock is acquired to prevent * other pool interrupts while the task is executing, and then we * ensure that unless pool is stopping, this thread does not have * its interrupt set. * 在任何任务执行之前,都需要对worker加锁去防止在任务运行时,其它的线程池中断操作 * clearInterruptsForTaskRun保证除非线程池正在stoping,线程不会被设置中断标示 * * 3. Each task run is preceded by a call to beforeExecute, which * might throw an exception, in which case we cause thread to die * (breaking loop with completedAbruptly true) without processing * the task. * 每个任务执行前会调用beforeExecute(),其中可能抛出一个异常,这种情况下会导致线程die(跳出循环,且completedAbruptly==true),没有执行任务 * 因为beforeExecute()的异常没有cache住,会上抛,跳出循环 * * 4. Assuming beforeExecute completes normally, we run the task, * gathering any of its thrown exceptions to send to afterExecute. * We separately handle RuntimeException, Error (both of which the * specs guarantee that we trap) and arbitrary Throwables. * Because we cannot rethrow Throwables within Runnable.run, we * wrap them within Errors on the way out (to the thread's * UncaughtExceptionHandler). Any thrown exception also * conservatively causes thread to die. * * 5. After task.run completes, we call afterExecute, which may * also throw an exception, which will also cause thread to * die. According to JLS Sec 14.20, this exception is the one that * will be in effect even if task.run throws. * * The net effect of the exception mechanics is that afterExecute * and the thread's UncaughtExceptionHandler have as accurate * information as we can provide about any problems encountered by * user code. * * @param w the worker */
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts //标识线程是不是异常终止的 boolean completedAbruptly = true; try { //task不为null情况是初始化worker时,如果task为null,则去队列中取线程--->getTask() //可以看到,只要getTask方法被调用且返回null,那么worker必定被销毁,而确定一个线程是否应该被销毁的逻辑,在getTask方法中 while (task != null || (task = getTask()) != null) { w.lock(); if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { //线程开始执行之前执行此方法,可以实现Worker未执行退出,本类中未实现 beforeExecute(wt, task); Throwable thrown = null; try { task.run();//runWorker方法最本质的存在意义,就是调用task的run方法 } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { //线程执行后执行,可以实现标识Worker异常中断的功能,本类中未实现 afterExecute(task, thrown); } } finally { task = null;//运行过的task标null w.completedTasks++; w.unlock(); } } //标识线程不是异常终止的,是因为不满足while条件,被迫销毁的 completedAbruptly = false; } finally { //处理worker退出的逻辑 processWorkerExit(w, completedAbruptly); } }
我们归纳:
runWorker方法中的getTask()方法是线程处理完一个任务后,从队列中获取新任务的实现,也是处理判断一个线程是否应该被销毁的逻辑所在:
/** * Performs blocking or timed wait for a task, depending on * current configuration settings, or returns null if this worker * must exit because of any of: 以下情况会返回null * 1. There are more than maximumPoolSize workers (due to * a call to setMaximumPoolSize). * 超过了maximumPoolSize设置的线程数量(因为调用了setMaximumPoolSize()) * 2. The pool is stopped. * 线程池被stop * 3. The pool is shutdown and the queue is empty. * 线程池被shutdown,并且workQueue空了 * 4. This worker timed out waiting for a task, and timed-out * workers are subject to termination (that is, * {@code allowCoreThreadTimeOut || workerCount > corePoolSize}) * both before and after the timed wait. * 线程等待任务超时 * * @return task, or null if the worker must exit, in which case * workerCount is decremented * 返回null表示这个worker要结束了,这种情况下workerCount-1 */ private Runnable getTask() { // timedOut 主要是判断后面的poll是否要超时 boolean timedOut = false; // Did the last poll() time out? /** * 用于判断线程池状态 */ for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. /** * 对线程池状态的判断,两种情况会workerCount-1,并且返回null * 线程池状态为shutdown,且workQueue为空(反映了shutdown状态的线程池还是要执行workQueue中剩余的任务的) * 线程池状态为>=stop()(只有TIDYING和TERMINATED会大于stop)(shutdownNow()会导致变成STOP)(此时不用考虑workQueue的情况) */ if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount();//循环的CAS减少worker数量,直到成功 return null; } int wc = workerCountOf(c); // Are workers subject to culling? //allowCoreThreadTimeOut字段,表示是否允许核心线程超过闲置时间后被摧毁,默认为false //我们前面说过,如果getTask方法返回null,那么这个worker只有被销毁一途 //于是这个timed有3种情况 //(1)当没有超过核心线程,且默认allowCoreThreadTimeOut为false时 // timed值为false,除非目前线程数大于最大值,否则下面的if始终进不去,该方法不可能返回null,worker也就不可能被销毁 //(2)当超过核心线程数,且默认allowCoreThreadTimeOut为false时//timed值为true, //(3)如果allowCoreThreadTimeOut为true,则timed始终为true boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; //wc > maximumPoolSize则必销毁,因为wc>1也肯定满足 //wc <= maximumPoolSize,如果(timed && timedOut) = true 一般情况下也意味着worker要被销毁,因为超时一般是由阻塞队列为空造成的 //一般情况是这样,那不一般的情况呢?阻塞队列没有为空,但是因为一些原因,还是超时了,这时候取决于wc > 1,它为真就销毁,为假就不销毁。 // 也就是说,如果阻塞队列还有任务,但是wc=1,线程池里只剩下自己这个线程了,那么就不能销毁,这个if不满足,我们的代码继续往下走 //当核心线程数<线程数<最大线程数,或者允许核心线程超时时, if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { //如果timed为true那么使用poll取线程。否则使用take() Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : //workQueue.poll():如果在keepAliveTime时间内,阻塞队列还是没有任务,返回null workQueue.take(); //workQueue.take():如果阻塞队列为空,当前线程会被挂起等待;当队列中有任务加入时,线程被唤醒,take方法返回任务 //如果正常返回,那么返回取到的task。 if (r != null) return r; //否则,设为超时,重新执行循环, timedOut = true; } catch (InterruptedException retry) { //在阻塞从workQueue中获取任务时,可以被interrupt()中断,代码中捕获了InterruptedException,重置timedOut为初始值false,再次执行第1步中的判断,满足就继续获取任务,不满足return null,会进入worker退出的流程 timedOut = false; } }
归纳:
在runWorker方法中,我们看到当不满足while条件后,线程池会执行退出线程的操作,这个操作,就封装在processWorkerExit方法中。
/** * Performs cleanup and bookkeeping for a dying worker. Called * only from worker threads. Unless completedAbruptly is set, * assumes that workerCount has already been adjusted to account * for exit. This method removes thread from worker set, and * possibly terminates the pool or replaces the worker if either * it exited due to user task exception or if fewer than * corePoolSize workers are running or queue is non-empty but * there are no workers. * * @param w the worker * @param completedAbruptly if the worker died due to user exception */ private void processWorkerExit(Worker w, boolean completedAbruptly) { //参数: //worker: 要结束的worker //completedAbruptly: 是否突然完成(是否因为异常退出) /** * 1、worker数量-1 * 如果是突然终止,说明是task执行时异常情况导致,即run()方法执行时发生了异常,那么正在工作的worker线程数量需要-1 * 如果不是突然终止,说明是worker线程没有task可执行了,不用-1,因为已经在getTask()方法中-1了 */ if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted 代码和注释正好相反啊 decrementWorkerCount(); /** * 2、从Workers Set中移除worker */ final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { completedTaskCount += w.completedTasks; //把worker的完成任务数加到线程池的完成任务数 workers.remove(w); //从HashSet<Worker>中移除 } finally { mainLock.unlock(); } /** * 3、在对线程池有负效益的操作时,都需要“尝试终止”线程池 * 主要是判断线程池是否满足终止的状态 * 如果状态满足,但线程池还有线程,尝试对其发出中断响应,使其能进入退出流程 * 没有线程了,更新状态为tidying->terminated */ tryTerminate(); /** * 4、是否需要增加worker线程 * 线程池状态是running 或 shutdown * 如果当前线程是突然终止的,addWorker() * 如果当前线程不是突然终止的,但当前线程数量 < 要维护的线程数量,addWorker() * 故如果调用线程池shutdown(),直到workQueue为空前,线程池都会维持corePoolSize个线程,然后再逐渐销毁这corePoolSize个线程 */ int c = ctl.get(); //如果状态是running、shutdown,即tryTerminate()没有成功终止线程池,尝试再添加一个worker if (runStateLessThan(c, STOP)) { //不是突然完成的,即没有task任务可以获取而完成的,计算min,并根据当前worker数量判断是否需要addWorker() if (!completedAbruptly) { int min = allowCoreThreadTimeOut ? 0 : corePoolSize; //allowCoreThreadTimeOut默认为false,即min默认为corePoolSize //如果min为0,即不需要维持核心线程数量,且workQueue不为空,至少保持一个线程 if (min == 0 && ! workQueue.isEmpty()) min = 1; //如果线程数量大于最少数量,直接返回,否则下面至少要addWorker一个 if (workerCountOf(c) >= min) return; // replacement not needed } //添加一个没有firstTask的worker //只要worker是completedAbruptly突然终止的,或者线程数量小于要维护的数量,就新添一个worker线程,即使是shutdown状态 addWorker(null, false); } }
总而言之:如果线程池还没有完全终止,就仍需要保持一定数量的线程。
线程池状态是running 或 shutdown的情况下:
A、如果当前线程是突然终止的,addWorker() B、如果当前线程不是突然终止的,但当前线程数量 < 要维护的线程数量,addWorker() 故如果调用线程池shutdown(),直到workQueue为空前,线程池都会维持corePoolSize个线程,然后再逐渐销毁这corePoolSize个线程
前面我们讲过execute方法,其作用是将一个任务提交给线程池,以期在未来的某个时间点被执行。
submit方法在作用上,和execute方法是一样的,将某个任务提交给线程池,让线程池调度线程去执行它。
那么它和execute方法有什么区别呢?我们来看看submit方法的源码:
submit方法的实现在ThreadPoolExecutor的父类AbstractExecutorService类中,有三种重载方法:
/** * 提交一个 Runnable 任务用于执行,并返回一个表示该任务的 Future。该Future的get方法在成功完成时将会返回null。 * submit 参数: task - 要提交的任务 返回:表示任务等待完成的 Future * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask); return ftask; } /** * 提交一个Runnable 任务用于执行,并返回一个表示该任务的 Future。该 Future 的 get 方法在成功完成时将会返回给定的结果。 * submit 参数: task - 要提交的任务 result - 完成任务时要求返回的结果 * 返回: 表示任务等待完成的 Future * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task, result); execute(ftask); return ftask; } /** * 提交一个Callable的任务用于执行,返回一个表示任务的未决结果的 Future。该 Future 的 get 方法在成功完成时将会返回该任务的结果。 * 如果想立即阻塞任务的等待,则可以使用 result = exec.submit(aCallable).get(); 形式的构造。 * 参数: task - 要提交的任务 返回: 表示任务等待完成的Future * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; }
源码很简单,submit方法,将任务task封装成FutureTask(newTaskFor方法中就是new了一个FutureTask),然后调用execute。所以submit方法和execute的所有区别,都在这FutureTask所带来的差异化实现上。
总而言之,submit方法将一个任务task用future模式封装成FutureTask对象,提交给线程执行,并将这个FutureTask对象返回,以供主线程在该任务被线程池执行之后得到执行结果。
注意,获得执行结果的方法FutureTask.get(),会阻塞执行该方法的线程。
以上是java基礎—線程池源碼分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!