Python並發處理asyncio套件如何使用
这次给大家带来Python并发处理asyncio包如何使用,Python并发处理asyncio包使用的注意事项有哪些,下面就是实战案例,一起来看一下。
导语:本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。
本文重点:
1、了解asyncio包的功能和使用方法;
2、了解如何避免阻塞型调用;
3、学会使用协程避免回调地狱。
一、使用asyncio包做并发编程
1、并发与并行
并发:一次处理多件事。
并行:一次做多件事。
并发用于制定方案,用来解决可能(但未必)并行的问题。并发更好。
2、asyncio概述
了解asyncio的4个特点:
asyncio包使用事件循环驱动的协程实现并发。
适合asyncio API的协程在定义体中必须使用yield from,而不能使用yield。
使用asyncio处理的协程,需在定义体上使用@asyncio.coroutine装饰。装饰的功能在于凸显协程,同时当协程不产出值,协程会被垃圾回收。
Python3.4起,asyncio包只直接支持TCP和UDP协议。如果想使用asyncio实现HTTP客户端和服务器时,常使用aiohttp包。
在协程中使用yield from需要注意两点:
使用yield froml链接的多个协程最终必须由不是协程的调用方驱动,调用方显式或隐式在最外层委派生成器上调用next()函数或 .send()方法。
链条中最内层的子生成器必须是简单的生成器(只使用yield)或可迭代的对象。
但在asyncio包的API中使用yield from还需注意两个细节:
asyncio包中编写的协程链条始终通过把最外层委派生成器传给asyncio包API中的某个函数驱动,例如loop.run_until_complete()。即不通过调用next()函数或 .send()方法驱动协程。
编写的协程链条最终通过yield from把职责委托给asyncio包中的某个协程函数或协程方法。即最内层的子生成器是库中真正执行I/O操作的函数,而不是我们自己编写的函数。
实例——通过asyncio包和协程以动画形式显示文本式旋转指针:
import asyncio import itertools import sys @asyncio.coroutine # 交给 asyncio 处理的协程要使用 @asyncio.coroutine 装饰 def spin(msg): for char in itertools.cycle('|/-\\'): status = char + ' ' + msg print(status) try: yield from asyncio.sleep(.1) # 使用 yield from asyncio.sleep(.1) 代替 time.sleep(.1),这样的休眠不会阻塞事件循环。 except asyncio.CancelledError: # 如果 spin 函数苏醒后抛出 asyncio.CancelledError 异常,其原因是发出了取消请求,因此退出循环。 break @asyncio.coroutine def slow_function(): # slow_function 函数是协程,在用休眠假装进行 I/O 操作时,使用 yield from 继续执行事件循环。 # 假装等待I/O一段时间 yield from asyncio.sleep(3) # yield from asyncio.sleep(3) 表达式把控制权交给主循环,在休眠结束后恢复这个协程。 return 42 @asyncio.coroutine def supervisor(): # supervisor 函数也是协程 spinner = asyncio.async(spin('thinking!')) # asyncio.async(...) 函数排定 spin 协程的运行时间,使用一个 Task 对象包装spin 协程,并立即返回。 print('spinner object:', spinner) result = yield from slow_function() # 驱动 slow_function() 函数。结束后,获取返回值。 # 同时,事件循环继续运行,因为slow_function 函数最后使用 yield from asyncio.sleep(3) 表达式把控制权交回给了主循环。 spinner.cancel() # Task 对象可以取消;取消后会在协程当前暂停的 yield 处抛出 asyncio.CancelledError 异常。协程可以捕获这个异常,也可以延迟取消,甚至拒绝取消。 return result if name == 'main': loop = asyncio.get_event_loop() # 获取事件循环的引用 result = loop.run_until_complete(supervisor()) # 驱动 supervisor 协程,让它运行完毕;这个协程的返回值是这次调用的返回值。 loop.close() print('Answer:', result)
3、线程与协程对比
线程:调度程序在任何时候都能中断线程。必须记住保留锁。去保护程序中的重要部分,防止多步操作在执行的过程中中断,防止数据处于无效状态。
协程:默认会做好全方位保护,以防止中断。对协程来说无需保留锁,在多个线程之间同步操作,协程自身就会同步,因为在任意时刻只有一个协程运行。
4、从期物、任务和协程中产出
在asyncio包中,期物和协程关系紧密,因为可以使用yield from从asyncio.Future对象中产出结果。这意味着,如果foo是协程函数,抑或是返回Future或Task实例的普通函数,那么可以这样写:res=yield from foo()。这是asyncio包中很多地方可以互换协程与期物的原因之一。
二、避免阻塞型调用
1、有两种方法能避免阻塞型调用中止整个应用程序的进程:
在单独的线程中运行各个阻塞型操作。
把每个阻塞型操作转换成非阻塞的异步调用。
使用多线程处理大量连接时将耗费过多的内存,故此通常使用回调来实现异步调用。
2、使用Executor对象防止阻塞事件循环:
使用loop.run_in_executor把阻塞的作业(例如保存文件)委托给线程池做。
@asyncio.coroutine def download_one(cc, base_url, semaphore, verbose): try: with (yield from semaphore): image = yield from get_flag(base_url, cc) except web.HTTPNotFound: status = HTTPStatus.not_found msg = 'not found' except Exception as exc: raise FetchError(cc) from exc else: loop = asyncio.get_event_loop() # 获取事件循环对象的引用 loop.run_in_executor(None, # None 使用默认的 TrreadPoolExecutor 实例 save_flag, image, cc.lower() + '.gif') # 传入可调用对象 status = HTTPStatus.ok msg = 'OK' if verbose and msg: print(cc, msg) return Result(status, cc)
asyncio 的事件循环背后维护一个 ThreadPoolExecutor 对象,我们可以调用 run_in_executor 方法, 把可调用的对象发给它执行。
三、从回调到期物和协程
回调地狱:如果一个操作需要依赖之前操作的结果,那就得嵌套回调。
Python 中的回调地狱:
def stage1(response1): request2 = step1(response1) api_call2(request2, stage2) def stage2(response2): request3 = step2(response2) api_call3(request3, stage3) def stage3(response3): step3(response3) api_call1(request1, step1)
使用 协程 和 yield from 结构做异步编程,无需用回调:
@asyncio.coroutine def three_stages(request1): response1 = yield from api_call1() request2 = step1(response1) response2 = yield from api_call2(request2) request3 = step2(response2) response3 = yield from api_call3(request3) step3(response3) loop.create_task(three_stages(request1)) # 协程不能直接调用,必须用事件循环显示指定协程的执行时间,或者在其他排定了执行时间的协程中使用 yield from 表达式把它激活
四、使用asyncio包编写服务器
使用asyncio包能实现TCP和HTTP服务器
Web服务将成为asyncio包的重要使用场景。
相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!
推荐阅读:
以上是Python並發處理asyncio套件如何使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

在CentOS系統上進行PyTorch分佈式訓練,需要按照以下步驟操作:PyTorch安裝:前提是CentOS系統已安裝Python和pip。根據您的CUDA版本,從PyTorch官網獲取合適的安裝命令。對於僅需CPU的訓練,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,請確保已安裝對應版本的CUDA和cuDNN,並使用相應的PyTorch版本進行安裝。分佈式環境配置:分佈式訓練通常需要多台機器或單機多GPU。所
