python檢定Jarque-Bera是否符合常態分佈
本篇文章給大家分享的內容是python檢驗Jarque-Bera是否符合常態分佈,有著一定的參考價值,有需要的朋友可以參考一下
#常態分佈是一種總體分佈的常態性檢定。當序列服從常態分佈時,JB統計量:
漸進服從分佈。其中n為樣本規模,S,K分別為隨機變數的偏度和峰度。計算公式如下:
python的sicipy.stats中偏度和峰度的調用的函數為stats.skew(y)
、stats.kurtosis(y)############# ##下面自己實作一遍python的scipy函式庫中計算偏度和斜的公式及建立常態分佈檢定。 ######程式碼###,其中峰度的公式為
#在excel中,偏態和峰度的計算公式如下:
import numpy as npimport scipy.stats as statsdef self_JBtest(y): # 样本规模n n = y.size y_ = y - y.mean() """ M2:二阶中心钜 skew 偏度 = 三阶中心矩 与 M2^1.5的比 krut 峰值 = 四阶中心钜 与 M2^2 的比 """ M2 = np.mean(y_**2) skew = np.mean(y_**3)/M2**1.5 krut = np.mean(y_**4)/M2**2 """ 计算JB统计量,以及建立假设检验 """ JB = n*(skew**2/6 + (krut-3 )**2/24) pvalue = 1 - stats.chi2.cdf(JB,df=2) print("偏度:",stats.skew(y),skew) print("峰值:",stats.kurtosis(y)+3,krut) print("JB检验:",stats.jarque_bera(y)) return np.array([JB,pvalue]) y1 = stats.norm.rvs(size=10) y2 = stats.t.rvs(size=1000,df=4) print(self_JBtest(y1)) print(self_JBtest(y2))
=============== RESTART: C:\Users\tinysoft\Desktop\JB正态性检验.py =============== 偏度: 0.5383125387398069 0.53831253874 峰值: 2.9948926317585918 2.99489263176 JB检验: (0.48297818444514068, 0.78545737133644544) [ 0.48297818 0.78545737] 偏度: -1.0488825341925703 -1.04888253419 峰值: 13.40804986639119 13.4080498664 JB检验: (4697.0050126426095, 0.0) [ 4697.00501264 0. ]
以上是python檢定Jarque-Bera是否符合常態分佈的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。
