首頁 > 後端開發 > Python教學 > pandas中的Dataframe查詢有哪些方法

pandas中的Dataframe查詢有哪些方法

php中世界最好的语言
發布: 2018-04-12 09:56:20
原創
4726 人瀏覽過

這次帶給大家pandas中的Dataframe查詢有哪些方法,pandas中Dataframe查詢的注意事項有哪些,下面就是實戰案例,一起來看一下。

pandas為我們提供了多種切片方法,而如果不太了解這些方法,就會經常容易混淆。以下舉例對這些切片方法進行說明。

資料介紹

先隨機產生一組資料:

In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)]
  ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)]
  ...: rnd_3 = [random.randrange(1,20) for x in xrange(1000)]
  ...: fecha = pd.date_range('2012-4-10', '2015-1-4')
  ...: 
  ...: data = pd.DataFrame({'fecha':fecha, 'rnd_1': rnd_1, 'rnd_2': rnd_2, 'rnd_3': rnd_3})
In [6]: data.describe()
Out[6]: 
       rnd_1    rnd_2    rnd_3
count 1000.000000 1000.000000 1000.000000
mean   9.946000   9.825000   9.894000
std    5.553911   5.559432   5.423484
min    1.000000   1.000000   1.000000
25%    5.000000   5.000000   5.000000
50%   10.000000  10.000000  10.000000
75%   15.000000  15.000000  14.000000
max   19.000000  19.000000  19.000000
登入後複製

#[]切片方法

使用方括號能夠對DataFrame進行切片,有點類似python的清單切片。依照索引能夠實現行選擇或列選擇或區塊選擇。

# 行选择
In [7]: data[1:5]
Out[7]: 
    fecha rnd_1 rnd_2 rnd_3
1 2012-04-11   1   16   3
2 2012-04-12   7   6   1
3 2012-04-13   2   16   7
4 2012-04-14   4   17   7
# 列选择
In [10]: data[['rnd_1', 'rnd_3']]
Out[10]: 
   rnd_1 rnd_3
0    8   12
1    1   3
2    7   1
3    2   7
4    4   7
5    12   8
6    2   12
7    9   8
8    13   17
9    4   7
10   14   14
11   19   16
12    2   12
13   15   18
14   13   18
15   13   11
16   17   7
17   14   10
18    9   6
19   11   15
20   16   13
21   18   9
22    1   18
23    4   3
24    6   11
25    2   13
26    7   17
27   11   8
28    3   12
29    4   2
..   ...  ...
970   8   14
971   19   5
972   13   2
973   8   10
974   8   17
975   6   16
976   3   2
977   12   6
978   12   10
979   15   13
980   8   4
981   17   3
982   1   17
983   11   5
984   7   7
985   13   14
986   6   19
987   13   9
988   3   15
989   19   6
990   7   11
991   11   7
992   19   12
993   2   15
994   10   4
995   14   13
996   12   11
997   11   15
998   17   14
999   3   8
[1000 rows x 2 columns]
# 区块选择
In [11]: data[:7][['rnd_1', 'rnd_2']]
Out[11]: 
  rnd_1 rnd_2
0   8   17
1   1   16
2   7   6
3   2   16
4   4   17
5   12   19
6   2   7
登入後複製

不過對於多列選擇,不能像行選擇時一樣使用1:5這樣的方法來選擇。

In [12]: data[['rnd_1':'rnd_3']]
 File "<ipython-input-13-6291b6a83eb0>", line 1
  data[['rnd_1':'rnd_3']]
         ^
SyntaxError: invalid syntax
登入後複製

loc

loc可以讓你依照索引來進行行列選擇。

In [13]: data.loc[1:5]
Out[13]: 
    fecha rnd_1 rnd_2 rnd_3
1 2012-04-11   1   16   3
2 2012-04-12   7   6   1
3 2012-04-13   2   16   7
4 2012-04-14   4   17   7
5 2012-04-15   12   19   8
登入後複製

這裡要注意的是,loc與第一種方法不同之處在於會把第5行也選擇進去,而第一種方法只會選擇到第4行為止。

data.loc[2:4, ['rnd_2', 'fecha']]
Out[14]: 
  rnd_2   fecha
2   6 2012-04-12
3   16 2012-04-13
4   17 2012-04-14
登入後複製

loc能夠選擇在兩個特定日期之間的數據,需要注意的是這兩個日期必須都要在索引中。

In [15]: data_fecha = data.set_index('fecha')
  ...: data_fecha.head()
Out[15]: 
      rnd_1 rnd_2 rnd_3
fecha             
2012-04-10   8   17   12
2012-04-11   1   16   3
2012-04-12   7   6   1
2012-04-13   2   16   7
2012-04-14   4   17   7
In [16]: # 生成两个特定日期
  ...: fecha_1 = dt.datetime(2013, 4, 14)
  ...: fecha_2 = dt.datetime(2013, 4, 18)
  ...: 
  ...: # 生成切片数据
  ...: data_fecha.loc[fecha_1: fecha_2]
Out[16]: 
      rnd_1 rnd_2 rnd_3
fecha             
2013-04-14   17   10   5
2013-04-15   14   4   9
2013-04-16   1   2   18
2013-04-17   9   15   1
2013-04-18   16   7   17
登入後複製

更新如果沒有特殊需求,強烈建議使用loc而盡量少使用[],因為loc正在重新賦值操作時會避免chained indexing問題,使用[]時編譯器很可能會給予SettingWithCopy的警告。

具體可以參考官方文件:http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

iloc

如果說loc是依照索引(index)的值來選取的話,那麼iloc就是依照索引的位置來進行選取。 iloc不關心索引的具體值是多少,只關心位置是多少,所以使用iloc時方括號中只能使用數值。

# 行选择
In [17]: data_fecha[10: 15]
Out[17]: 
      rnd_1 rnd_2 rnd_3
fecha             
2012-04-20   14   6   14
2012-04-21   19   14   16
2012-04-22   2   6   12
2012-04-23   15   8   18
2012-04-24   13   8   18
# 列选择
In [18]: data_fecha.iloc[:,[1,2]].head()
Out[18]: 
      rnd_2 rnd_3
fecha          
2012-04-10   17   12
2012-04-11   16   3
2012-04-12   6   1
2012-04-13   16   7
2012-04-14   17   7
# 切片选择
In [19]: data_fecha.iloc[[1,12,34],[0,2]]
Out[19]: 
      rnd_1 rnd_3
fecha          
2012-04-11   1   3
2012-04-22   2   12
2012-05-14   17   10
登入後複製

at

at的使用方法與loc類似,但是比loc有更快的存取資料的速度,而且只能訪問單一元素,不能存取多個元素。

In [20]: timeit data_fecha.at[fecha_1,'rnd_1']
The slowest run took 3783.11 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 11.3 µs per loop
In [21]: timeit data_fecha.loc[fecha_1,'rnd_1']
The slowest run took 121.24 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 192 µs per loop
In [22]: data_fecha.at[fecha_1,'rnd_1']
Out[22]: 17
登入後複製

iat

iat對於iloc的關係就像at對於loc的關係,是一種更快的基於索引位置的選擇方法,同at一樣只能存取單一元素。

In [23]: data_fecha.iat[1,0]
Out[23]: 1
In [24]: timeit data_fecha.iat[1,0]
The slowest run took 6.23 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 8.77 µs per loop
In [25]: timeit data_fecha.iloc[1,0]
10000 loops, best of 3: 158 µs per loop
登入後複製

ix

以上說過的幾種方法都要求查詢的秩在索引中,或者位置不超過長度範圍,而ix允許你得到不在DataFrame索引中的資料。

In [28]: date_1 = dt.datetime(2013, 1, 10, 8, 30)
  ...: date_2 = dt.datetime(2013, 1, 13, 4, 20)
  ...: 
  ...: # 生成切片数据
  ...: data_fecha.ix[date_1: date_2]
Out[28]: 
      rnd_1 rnd_2 rnd_3
fecha             
2013-01-11   19   17   19
2013-01-12   10   9   17
2013-01-13   15   3   10
登入後複製

如上面的例子所示,2013年1月10號並沒有被選擇進去,因為這個時間點被看作為0點0分,比8點30分要早一些。

相信看了本文案例你已經掌握了方法,更多精彩請關注php中文網其它相關文章!

推薦閱讀:

python怎麼實現百度語音辨識api的步奏詳解

python如何呼叫API實現智能回覆功能

以上是pandas中的Dataframe查詢有哪些方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板