目錄
1、概念
1.1、前提
2.1、分類評估指標
2.1.1 值指標-Accuracy、Precision、Recall、F值
2.1.2 相關曲線-P-R曲線、ROC曲線及AUC值
首頁 後端開發 Python教學 詳解分類評估指標與迴歸評估指標以及Python程式碼實現

詳解分類評估指標與迴歸評估指標以及Python程式碼實現

Apr 16, 2018 am 11:11 AM
指標

這篇文章介紹的內容是詳解分類評價指標和回歸評價指標以及Python代碼實現,有著一定的參考價值,現在分享給大家,有需要的朋友可以參考一下。

1、概念

效能衡量(評估)指標,主分為兩大類:
 1)分類評估指標(classification),主要分析,離散的,整數的。其具體指標包括accuracy(準確率),precision(精確率),recall(召回率),F值,P-R曲線,ROC曲線和AUC。
 2)回歸評估指標(regression),主要分析整數和實數之間的關係。其特定指標包括可釋方差分數(explianed_variance_score),平均絕對誤差MAE(mean_absolute_error),均方誤差MSE(mean-squared_error),均方根差RMSE,交叉熵lloss(Log loss,cross-entropy loss),R方值(確定係數,r2_score)。

1.1、前提

假設只有兩類-正類(positive)和負類(negative),通常以關注的類為正類,其他類為負類(故多類問題亦可歸納為兩類)
混淆矩陣(Confusion matrix)如下

##正負總結正#TP FNP(實際上為正)#為負
實際類別 預測類別



##FP TN N(實際為負數)
#表中AB模式:第一個表示預測結果的對錯,第二個表示預測的類別。如TP表示,True Positive,即正確的預測為正類;FN表示,False Negative,即錯誤的預測為了負類。

2、評估指標(效能衡量)

2.1、分類評估指標

2.1.1 值指標-Accuracy、Precision、Recall、F值
度量定義表示
Accuracy(準確率) #Precision(精確率) Recall(召回率) F值
正確分類的樣本數與總樣本數之比(預測為垃圾簡訊中真正的垃圾簡訊的比例) 判定為正例中真正正例數與判定為正例數之比(所有真的垃圾簡訊被分類求正確找出來的比例) 被正確判定為正例數與總正例數之比 準確率與召回率的調和平均F -score
accuracy=

#precision=

#recall=

#F - score =

#

1.precision也常稱為查準率,recall稱為查全率
2.比較常用的是F1,

#python3.6程式碼實作:

#调用sklearn库中的指标求解from sklearn import metricsfrom sklearn.metrics import precision_recall_curvefrom sklearn.metrics import average_precision_scorefrom sklearn.metrics import accuracy_score#给出分类结果y_pred = [0, 1, 0, 0]
y_true = [0, 1, 1, 1]
print("accuracy_score:", accuracy_score(y_true, y_pred))
print("precision_score:", metrics.precision_score(y_true, y_pred))
print("recall_score:", metrics.recall_score(y_true, y_pred))
print("f1_score:", metrics.f1_score(y_true, y_pred))
print("f0.5_score:", metrics.fbeta_score(y_true, y_pred, beta=0.5))
print("f2_score:", metrics.fbeta_score(y_true, y_pred, beta=2.0))
登入後複製
2.1.2 相關曲線-P-R曲線、ROC曲線及AUC值

1)P-R曲線
步驟:
   1、從高到低將」score」值排序並依序作為閾值threshold;
   2、對於每個閾值,」score」值大於或等於這個threshold的測試樣本被認為正例,其他為負例。從而形成一組預測數。
eg.
詳解分類評估指標與迴歸評估指標以及Python程式碼實現
以0.9為閾值,則第1個測試樣本為正例,2、3、4、5為負例
得到


預測為正例預測為負例總計
##正例(score大於閾值)0.90.11
負例(score小於閾值) 0.2 0.3 0.3 0.35 = 1.15

0.8 0.7 0.7 0.65 = 2.85#4

#4##precision=


recall=


詳解分類評估指標與迴歸評估指標以及Python程式碼實現







詳解分類評估指標與迴歸評估指標以及Python程式碼實現


詳解分類評估指標與迴歸評估指標以及Python程式碼實現在閾值以下的部分,當作負例,則預測為負例的取值情況是正確預測值,即如果本身是正例,則取TP;如果本身是負例,則取TN,其都為預測分值。
python實作偽代碼
詳解分類評估指標與迴歸評估指標以及Python程式碼實現

#precision和recall的求法如上
#主要介绍一下python画图的库
import matplotlib.pyplot ad plt
#主要用于矩阵运算的库
import numpy as np#导入iris数据及训练见前一博文
...
#加入800个噪声特征,增加图像的复杂度
#将150*800的噪声特征矩阵与150*4的鸢尾花数据集列合并
X = np.c_[X, np.random.RandomState(0).randn(n_samples, 200*n_features)]
#计算precision,recall得到数组
for i in range(n_classes):
    #计算三类鸢尾花的评价指标, _作为临时的名称使用
    precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:,i])#plot作图plt.clf()
for i in range(n_classes):
    plt.plot(recall[i], precision[i])
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.show()
登入後複製

將上述程式碼補充完整後得到鳶尾花資料集的P-R曲線
詳解分類評估指標與迴歸評估指標以及Python程式碼實現
2)ROC曲線詳解分類評估指標與迴歸評估指標以及Python程式碼實現橫軸:假正例率fp rate = FP / N
縱軸:真正例率tp rate = TP / N
步驟: 詳解分類評估指標與迴歸評估指標以及Python程式碼實現   1、從高到低將」score」值排序並依序作為閾值threshold;
   2、對於每個閾值,」score」值大於或等於這個threshold的測試樣本被認為是正例,其他為負例。從而形成一組預測數。
詳解分類評估指標與迴歸評估指標以及Python程式碼實現
同P-R曲線計算類似,不再贅述

 鳶尾花資料集的ROC圖像為 ##########  AUC(Area Under Curve)定義為ROC曲線下的面積 ###  AUC值提供了分類器的一個整體數值。通常AUC越大,分類器更好,取值為[0, 1]#########2.2、回歸評價指標######1)可釋方差分數###### ###2)平均絕對誤差MAE (Mean absolute error) #########3)均方差MSE(Mean squared error) ################4) logistics回歸損失#########5)一致性評估- pearson相關係數法##########python程式碼實作###
from sklearn.metrics import log_loss
log_loss(y_true, y_pred)from scipy.stats import pearsonr
pearsonr(rater1, rater2)from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(rater1, rater2)
登入後複製

以上是詳解分類評估指標與迴歸評估指標以及Python程式碼實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles