詳談Numpy中數組重塑、合併與分割方法
以下為大家分享一篇詳談Numpy中陣列重塑、合併與分割方法,具有很好的參考價值,希望對大家有幫助。一起過來看看吧
1.陣列重塑
#1.1一維陣列轉換成二維陣列
透過reshape( )函數即可實現,假設data是numpy.array類型的一維數組array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),現在將其轉變為2行5列的二維數組,代碼如下:
#data.reshape((2,5))
作為參數的形狀的其中一維可以是-1,它表示該維度的大小由資料本身推斷而來,因此上面程式碼等價於:
data.reshape((2,-1))
1.2二維數組轉換成一維數組
將多維數組轉換成一維數組的運算通常稱為扁平化(flattening)或散開(raveling),因此有兩個函數可供選擇。執行程式碼如下:
data.ravel() # 不会产生源数据的副本 data.flatten() # 总是返回数据的副本
關於這兩點的區別,理解的不是很透徹。有人懂得話,歡迎評論交流。
2.陣列的合併與分割
#2.1陣列的合併
numpy提供許多數字組合並的方法,這裡只介紹最常用的一種,即concatenate方法,程式碼如下:
arr1 = np.array([[1,2,3], [4,5,6]]) arr2 = np.array([[7,8,9], [10,11,12]]) data = np.concatenate([arr1, arr2], axis=0) # axis参数指明合并的轴向,0表示按行,1表示按列
#2.2數組的拆分
這裡只介紹split函數
np.split(data, [1], axis=0 )#data為拆分的數組,[1]為拆分的行號或列號,axis表示按列或行進行拆分(預設為0,即按行拆分)
相關推薦:#########對numpy中數組元素的統一賦值實例#############淺聊numpy數組的幾種排序方式_python######### #################以上是詳談Numpy中數組重塑、合併與分割方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

更新numpy版本方法:1、使用「pip install --upgrade numpy」指令;2、使用的是Python 3.x版本,使用「pip3 install --upgrade numpy」指令,將會下載並安裝,覆蓋目前的NumPy版本;3、若使用的是conda來管理Python環境,使用「conda install --update numpy」指令更新即可。

Numpy是Python中一個重要的數學庫,它提供了高效的數組操作和科學計算函數,被廣泛應用於數據分析、機器學習、深度學習等領域。在使用numpy過程中,我們經常需要查看numpy的版本號,以便確定目前環境所支援的功能。本文將介紹如何快速查看numpy版本,並提供具體的程式碼範例。方法一:使用numpy自帶的__version__屬性numpy模組自帶一個__

推薦使用最新版本的NumPy1.21.2。原因是:目前,NumPy的最新穩定版本是1.21.2。通常情況下,建議使用最新版本的NumPy,因為它包含了最新的功能和效能優化,並且修復了先前版本中的一些問題和錯誤。

一步步教你在PyCharm中安裝NumPy並充分利用其強大功能前言:NumPy是Python中用於科學計算的基礎庫之一,提供了高效能的多維數組物件以及對數組執行基本操作所需的各種函數。它是大多數資料科學和機器學習專案的重要組成部分。本文將向大家介紹如何在PyCharm中安裝NumPy,並透過具體的程式碼範例展示其強大的功能。第一步:安裝PyCharm首先,我們

如何升級numpy版本:簡單易懂的教程,需要具體程式碼範例引言:NumPy是一個重要的Python庫,用於科學計算。它提供了一個強大的多維數組物件和一系列與之相關的函數,可用於進行高效的數值運算。隨著新版本的發布,不斷有更新的特性和Bug修復可供我們使用。本文將介紹如何升級已安裝的NumPy函式庫,以取得最新特性並解決已知問題。步驟1:檢查目前NumPy版本在開始

numpy可以透過使用pip、conda、原始碼和Anaconda來安裝。詳細介紹:1、pip,在命令列中輸入pip install numpy即可;2、conda,在命令列中輸入conda install numpy即可;3、源碼,解碼源碼包或進入源碼目錄,在命令行中輸入python setup.py build python setup.py install即可。

隨著資料科學、機器學習和深度學習等領域的快速發展,Python成為了資料分析和建模的主流語言。在Python中,NumPy(NumericalPython的簡稱)是一個很重要的函式庫,因為它提供了一組高效的多維數組對象,也是許多其他函式庫如pandas、SciPy和scikit-learn的基礎。在使用NumPy過程中,很有可能會遇到不同版本之間的相容性問題,那麼

快速卸載NumPy函式庫的方法大揭秘,需要具體程式碼範例NumPy是一個強大的Python科學計算庫,廣泛用於資料分析、科學計算以及機器學習等領域。然而,有時候我們可能需要卸載NumPy庫,無論是為了更新版本還是因為其他原因。本文將介紹一些快速卸載NumPy函式庫的方法,並提供具體的程式碼範例。方法一:使用pip卸載pip是Python套件管理工具,它可以用於安裝、升級和
