首頁 > 後端開發 > Python教學 > Python 機器學習庫 NumPy

Python 機器學習庫 NumPy

不言
發布: 2018-04-19 10:49:05
原創
2102 人瀏覽過

在我們使用Python語言進行機器學習程式設計的時候,這是一個非常常用的基礎函式庫。本文針對Python 機器學習庫 NumPy入門教程,有興趣的朋友一起學習吧

NumPy是一個Python語言的軟體包,它非常適合於科學計算。在我們使用Python語言進行機器學習程式設計的時候,這是一個非常常用的基礎函式庫。

本文是對它的一個入門教學。

介紹

NumPy是一個用於科技運算的基礎軟體包,它是Python語言實現的。它包含了:

  • 強大的N維數組結構

  • #精密複雜的函數

  • ##可整合到C/C 和Fortran程式碼的工具

  • 線性代數,傅立葉變換以及隨機數能力


  • ##除了科學計算的用途以外,NumPy也可被用作高效的通用資料的多維容器。由於它適用於任意類型的數據,這使得NumPy可以無縫和高效的整合到多種類型的資料庫中。

取得NumPy
#因為這是Python語言的軟體包,因此需要你的機器上首先需要具備Python語言的環境。關於這一點,請自行在網路上搜尋取得方法。

關於如何取得NumPy也請參考scipy.org官網上的Installing packages。本文不再贅述。

筆者建議使用pip的方式安裝Python包,指令如下:

#

pip3 install numpy
登入後複製


本文的程式碼如下的環境中驗證與測試:

    硬體:MacBook Pro 2015
  • OS:macOS High Sierra
  • #語言環境:Python 3.6.2
  • 軟體包:numpy 1.13.3

  • 可以在這裡取得到本文的所有原始碼:https://github.com/paulQuei/numpy_tutorial

另外,

    為了簡單起見,本文我們會透過Python的print函數來進行結果的驗證
  • 為了拼字方便,我們會預設import numpy as np

基礎屬性與陣列創建
NumPy的基礎是一個同構的多維數據,數組中的元素可以透過下標來索引。在NumPy中,維度稱之為axis(複數是axes),維度的數量稱之為rank。

例如:

下面是一個具有rank 1的數組,axis的長度為3:

[1, 2, 3]


下面是一個有rank 2的陣列,axis的長度也是3:

[[ 1, 2, 3],

 [ 4, 5, 6]]



#我們可以透過array函數來建立NumPy的數組,例如這樣:

#

a = np.array([1, 2, 3])
b = np.array([(1,2,3), (4,5,6)])
登入後複製


請注意,這裡方括號是必須的,下面這種寫法是錯誤的:

a = np.array(1,2,3,4) # WRONG!!!
登入後複製


#NumPy的陣列類別是ndarray,它有一個別名是numpy.array,但這與Python標準函式庫的array.array並不一樣。後者只是一個一維數組。而ndarray具有以下的屬性:

    ndarray.ndim:陣列的維數。在Python世界中,維度稱為rank
  • ndarray.shape:陣列的維度。這是一系列數字,長度由數組的維度(ndim)決定。例如:長度為n的一維數組的shape是n。一個n行m列的矩陣的shape是n,m
  • ndarray.size:陣列中所有元素的數量
  • ndarray.dtype :數組中元素的類型,例如numpy.int32, numpy.int16或numpy.float64
  • ndarray.itemsize:數組中每個元素的大小,單位為位元組
  • ndarray.data:儲存陣列元素的緩衝。通常我們只需要透過下標來存取元素,而不需要存取緩衝

  • 下面我們來看程式碼範例:

# create_array.py

import numpy as np

a = np.array([1, 2, 3])
b = np.array([(1,2,3), (4,5,6)])

print('a=')
print(a)
print("a's ndim {}".format(a.ndim))
print("a's shape {}".format(a.shape))
print("a's size {}".format(a.size))
print("a's dtype {}".format(a.dtype))
print("a's itemsize {}".format(a.itemsize))
print('')
print('b=')
print(b)
print("b's ndim {}".format(b.ndim))
print("b's shape {}".format(b.shape))
print("b's size {}".format(b.size))
print("b's dtype {}".format(b.dtype))
print("b's itemsize {}".format(b.itemsize))
登入後複製


以下是這段程式碼的輸出:

#

a=
[1 2 3]
a's ndim 1
a's shape (3,)
a's size 3
a's dtype int64
a's itemsize 8
b=
[[1 2 3]
 [4 5 6]]
b's ndim 2
b's shape (2, 3)
b's size 6
b's dtype int64
b's itemsize 8
登入後複製

##我們也可以在建立陣列的時候,指定元素的類型,例如這樣:

c = np.array( [ [1,2], [3,4] ], dtype=complex )
登入後複製



##關於array函數的更多參數說明,請參考這裡:numpy.array


註:NumPy本身支援多維數組,也支援各種類型元素的資料。但考慮到,三維以上的陣列結構並不容易理解,而且我們在進行機器學習程式設計的時候,用的最多的是矩陣運算。因此,本文接下來的例子主要以一維和二維數位型數組來進行範例說明。


特定array的創建

#在實際上的專案工程中,我們常常會需要一些特定的數據,NumPy中提供了這麼一些輔助函數:

zeros:用來創建元素全部是0的陣列

  • ones:用來創建元素全部是1的陣列

  • empty:用来创建未初始化的数据,因此是内容是不确定的

  • arange:通过指定范围和步长来创建数组

  • linespace:通过指定范围和元素数量来创建数组

  • random:用来生成随机数


# create_specific_array.py

import numpy as np

a = np.zeros((2,3))
print('np.zeros((2,3)= \n{}\n'.format(a))

b = np.ones((2,3))
print('np.ones((2,3))= \n{}\n'.format(b))

c = np.empty((2,3))
print('np.empty((2,3))= \n{}\n'.format(c))

d = np.arange(1, 2, 0.3)
print('np.arange(1, 2, 0.3)= \n{}\n'.format(d))

e = np.linspace(1, 2, 7)
print('np.linspace(1, 2, 7)= \n{}\n'.format(e))

f = np.random.random((2,3))
print('np.random.random((2,3))= \n{}\n'.format(f))
登入後複製


这段代码的输出如下


np.zeros((2,3)= 
[[ 0. 0. 0.]
 [ 0. 0. 0.]]
np.ones((2,3))= 
[[ 1. 1. 1.]
 [ 1. 1. 1.]]
np.empty((2,3))= 
[[ 1. 1. 1.]
 [ 1. 1. 1.]]
np.arange(1, 2, 0.3)= 
[ 1. 1.3 1.6 1.9]
np.linspace(1, 2, 7)= 
[ 1.  1.16666667 1.33333333 1.5  1.66666667 1.83333333
 2. ]
np.random.random((2,3))= 
[[ 0.5744616 0.58700653 0.59609648]
 [ 0.0417809 0.23810732 0.38372978]]
登入後複製


Shape与操作

除了生成数组之外,当我们已经持有某个数据之后,我们可能会需要根据已有数组来产生一些新的数据结构,这时候我们可以使用下面这些函数:

  • reshape:根据已有数组和指定的shape,生成一个新的数组

  • vstack:用来将多个数组在垂直(v代表vertical)方向拼接(数组的维度必须匹配)

  • hstack:用来将多个数组在水平(h代表horizontal)方向拼接(数组的维度必须匹配)

  • hsplit:用来将数组在水平方向拆分

  • vsplit:用来将数组在垂直方向拆分

下面我们通过一些例子来进行说明。

为了便于测试,我们先创建几个数据。这里我们创建了:

  • zero_line:一行包含3个0的数组

  • one_column:一列包含3个1的数组

  • a:一个2行3列的矩阵

  • b:[11, 20)区间的整数数组


# shape_manipulation.py
zero_line = np.zeros((1,3))
one_column = np.ones((3,1))
print("zero_line = \n{}\n".format(zero_line))
print("one_column = \n{}\n".format(one_column))
a = np.array([(1,2,3), (4,5,6)])
b = np.arange(11, 20)
print("a = \n{}\n".format(a))
print("b = \n{}\n".format(b))
登入後複製


通过输出我们可以看到它们的结构:


zero_line = 
[[ 0. 0. 0.]]
one_column = 
[[ 1.]
 [ 1.]
 [ 1.]]
a = 
[[1 2 3]
 [4 5 6]]
b = 
[11 12 13 14 15 16 17 18 19]
登入後複製


数组b原先是一个一维数组,现在我们通过reshape方法将其调整成为一个3行3列的矩阵:


# shape_manipulation.py
b = b.reshape(3, -1)
print("b.reshape(3, -1) = \n{}\n".format(b))
登入後複製


这里的第二参数设为-1,表示根据实际情况自动决定。由于原先是9个元素的数组,因此调整后刚好是3X3的矩阵。这段代码输出如下:


b.reshape(3, -1) = 
[[11 12 13]
 [14 15 16]
 [17 18 19]]
登入後複製


接着,我们通过vstack函数,将三个数组在垂直方向拼接:


# shape_manipulation.py
c = np.vstack((a, b, zero_line))
print("c = np.vstack((a,b, zero_line)) = \n{}\n".format(c))
登入後複製



这段代码输出如下,请读者仔细观察一下拼接前后的数据结构:


c = np.vstack((a,b, zero_line)) = 
[[ 1. 2. 3.]
 [ 4. 5. 6.]
 [ 11. 12. 13.]
 [ 14. 15. 16.]
 [ 17. 18. 19.]
 [ 0. 0. 0.]]
登入後複製


同样的,我们也可以通过hstack进行水平方向的拼接。为了可以拼接我们需要先将数组a调整一下结构:


# shape_manipulation.py
a = a.reshape(3, 2)
print("a.reshape(3, 2) = \n{}\n".format(a))
d = np.hstack((a, b, one_column))
print("d = np.hstack((a,b, one_column)) = \n{}\n".format(d))
登入後複製


这段代码输出如下,请再次仔细观察拼接前后的数据结构:


a.reshape(3, 2) = 
[[1 2]
 [3 4]
 [5 6]]
d = np.hstack((a,b, one_column)) = 
[[ 1.  2. 11. 12. 13.  1.]
 [ 3.  4. 14. 15. 16.  1.]
 [ 5.  6. 17. 18. 19.  1.]]
登入後複製


请注意,如果两个数组的结构是不兼容的,拼接将无法完成。例如下面这行代码,它将无法执行:


# shape_manipulation.py
# np.vstack((a,b)) # ValueError: dimensions not match
登入後複製


这是因为数组a具有两列,而数组b具有3列,所以它们无法拼接。

接下来我们再看一下拆分。首先,我们将数组d在水平方向拆分成3个数组。然后我们将中间一个(下标是1)数组打印出来:


# shape_manipulation.py
e = np.hsplit(d, 3) # Split a into 3
print("e = np.hsplit(d, 3) = \n{}\n".format(e))
print("e[1] = \n{}\n".format(e[1]))
登入後複製


这段代码输出如下:


e = np.hsplit(d, 3) = 
[array([[ 1., 2.],
    [ 3., 4.],
    [ 5., 6.]]), array([[ 11., 12.],
    [ 14., 15.],
    [ 17., 18.]]), array([[ 13.,  1.],
    [ 16.,  1.],
    [ 19.,  1.]])]
e[1] = 
[[ 11. 12.]
 [ 14. 15.]
 [ 17. 18.]]
登入後複製


另外,假设我们设置的拆分数量使得原先的数组无法平均拆分,则操作会失败:


# np.hsplit(d, 4) # ValueError: array split does not result in an equal pision
登入後複製



除了指定数量平均拆分,我们也可以指定列数进行拆分。下面是将数组d从第1列和第3列两个地方进行拆分:



# shape_manipulation.py
f = np.hsplit(d, (1, 3)) # # Split a after the 1st and the 3rd column
print("f = np.hsplit(d, (1, 3)) = \n{}\n".format(f))
登入後複製


这段代码输出如下。数组d被拆分成了分别包含1,2,3列的三个数组:


f = np.hsplit(d, (1, 3)) = 
[array([[ 1.],
    [ 3.],
    [ 5.]]), array([[ 2., 11.],
    [ 4., 14.],
    [ 6., 17.]]), array([[ 12., 13.,  1.],
    [ 15., 16.,  1.],
    [ 18., 19.,  1.]])]
登入後複製


最后我们再将数组d在垂直方向进行拆分。同样的,如果指定的拆分数无法平均拆分则会失败:


# shape_manipulation.py
g = np.vsplit(d, 3)
print("np.hsplit(d, 2) = \n{}\n".format(g))
# np.vsplit(d, 2) # ValueError: array split does not result in an equal pision
np.vsplit(d, 3)将产生三个一维数组:
np.vsplit(d, 3) = 
[array([[ 1.,  2., 11., 12., 13.,  1.]]), array([[ 3.,  4., 14., 15., 16.,  1.]]), array([[ 5.,  6., 17., 18., 19.,  1.]])]
登入後複製


索引

接下来我们看看如何访问NumPy数组中的数据。

同样的,为了测试方便,我们先创建一个一维数组。它的内容是 [100,200)区间的整数。

最基本的,我们可以通过array[index]的方式指定下标来访问数组的元素,这一点对于有一点编程经验的人来说应该都是很熟悉的。


# array_index.py
import numpy as np
base_data = np.arange(100, 200)
print("base_data\n={}\n".format(base_data))
print("base_data[10] = {}\n".format(base_data[10]))
登入後複製


上面这段代码输出如下:


base_data
=[100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
 190 191 192 193 194 195 196 197 198 199]
base_data[10] = 110
登入後複製


在NumPy中,我们可以创建一个包含了若干个下标的数组来获取目标数组中的元素。如下所示:


# array_index.py
every_five = np.arange(0, 100, 5)
print("base_data[every_five] = \n{}\n".format(
  base_data[every_five]))
登入後複製


every_five是包含了我们要获取的下标的数组,它的内容大家应该很容易理解。我们可以直接通过方括号的形式来获取到所有我们指定了下标的元素,它们如下:


base_data[every_five] = 
[100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185
 190 195]
登入後複製


下标数组可以是一维的,当然也可以是多维的。假设我们要获取一个2X2的矩阵,这个矩阵的内容来自于目标数组中1,2,10,20这四个下标的元素,则可以这样写:


# array_index.py
a = np.array([(1,2), (10,20)])
print("a = \n{}\n".format(a))
print("base_data[a] = \n{}\n".format(base_data[a]))
登入後複製


这段代码输出如下:


a = 
[[ 1 2]
 [10 20]]
base_data[a] = 
[[101 102]
 [110 120]]
登入後複製


上面我们看到的是目标数组是一维的情况,下面我们把这个数组转换成一个10X10的二维数组。


# array_index.py
base_data2 = base_data.reshape(10, -1)
print("base_data2 = np.reshape(base_data, (10, -1)) = \n{}\n".format(base_data2))
登入後複製


reshape函数前面已经介绍过,大家应该能够想到它的结果:


base_data2 = np.reshape(base_data, (10, -1)) = 
[[100 101 102 103 104 105 106 107 108 109]
 [110 111 112 113 114 115 116 117 118 119]
 [120 121 122 123 124 125 126 127 128 129]
 [130 131 132 133 134 135 136 137 138 139]
 [140 141 142 143 144 145 146 147 148 149]
 [150 151 152 153 154 155 156 157 158 159]
 [160 161 162 163 164 165 166 167 168 169]
 [170 171 172 173 174 175 176 177 178 179]
 [180 181 182 183 184 185 186 187 188 189]
 [190 191 192 193 194 195 196 197 198 199]]
登入後複製


对于二维数组来说:

  • 假设我们只指定了一个下标,则访问的结果仍然是一个数组。

  • 假设我们指定了两个下标,则访问得到的是其中的元素


我们也可以通过”-1”来指定“最后一个”的元素


# array_index.py
print("base_data2[2] = \n{}\n".format(base_data2[2]))
print("base_data2[2, 3] = \n{}\n".format(base_data2[2, 3]))
print("base_data2[-1, -1] = \n{}\n".format(base_data2[-1, -1]))
登入後複製


这段代码输出如下。

对于更高维的数组,原理是一样的,读者可以自行推理。


base_data2[2] = 
[120 121 122 123 124 125 126 127 128 129]
base_data2[2, 3] = 
123
base_data2[-1, -1] = 
199
登入後複製


除此之外,我们还可以通过”:“的形式来指定范围,例如:2:5 这样。只写”:“则表示全部范围。

请看下面这段代码:


# array_index.py
print("base_data2[2, :]] = \n{}\n".format(base_data2[2, :]))
print("base_data2[:, 3]] = \n{}\n".format(base_data2[:, 3]))
print("base_data2[2:5, 2:4]] = \n{}\n".format(base_data2[2:5, 2:4]))
登入後複製



它的含义是:

  • 获取下标为2的行的所有元素

  • 获取下标为3的列的所有元素

获取下标为[2,5)行,下标为[2,4)列的所有元素。请读者仔细观察一下下面的输出结果:


base_data2[2, :]] = 
[120 121 122 123 124 125 126 127 128 129]
base_data2[:, 3]] = 
[103 113 123 133 143 153 163 173 183 193]
base_data2[2:5, 2:4]] = 
[[122 123]
 [132 133]
 [142 143]]
登入後複製



数学运算

NumPy中自然也少不了大量的数学运算函数,下面是一些例子,更多的函数请参见这里NumPy manual contents:


# operation.py
import numpy as np
base_data = (np.random.random((5, 5)) - 0.5) * 100
print("base_data = \n{}\n".format(base_data))
print("np.amin(base_data) = {}".format(np.amin(base_data)))
print("np.amax(base_data) = {}".format(np.amax(base_data)))
print("np.average(base_data) = {}".format(np.average(base_data)))
print("np.sum(base_data) = {}".format(np.sum(base_data)))
print("np.sin(base_data) = \n{}".format(np.sin(base_data)))
登入後複製



这段代码输出如下:


base_data = 
[[ -9.63895991 6.9292461 -2.35654712 -48.45969283 13.56031937]
 [-39.75875796 -43.21031705 -49.27708561 6.80357128 33.71975059]
 [ 36.32228175 30.92546582 -41.63728955 28.68799187 6.44818484]
 [ 7.71568596 43.24884701 -14.90716555 -9.24092252 3.69738718]
 [-31.90994273 34.06067289 18.47830413 -16.02495202 -44.84625246]]

np.amin(base_data) = -49.277085606595726
np.amax(base_data) = 43.24884701268845
np.average(base_data) = -3.22680706079886
np.sum(base_data) = -80.6701765199715
np.sin(base_data) = 
[[ 0.21254814 0.60204578 -0.70685739 0.9725159 0.8381861 ]
 [-0.88287359 0.69755541 0.83514527 0.49721505 0.74315189]
 [-0.98124746 -0.47103234 0.7149727 -0.40196147 0.16425187]
 [ 0.99045239 -0.66943662 -0.71791164 -0.18282139 -0.5276184 ]
 [-0.4741657 0.47665553 -0.36278223 0.31170676 -0.76041722]]
登入後複製


矩阵

接下来我们看一下以矩阵的方式使用NumPy。

首先,我们创建一个5X5的随机数整数矩阵。有两种方式可以获得矩阵的转置:通过.T或者transpose函数。另外, 通过dot函数可以进行矩阵的乘法,示例代码如下:


# matrix.py

import numpy as np

base_data = np.floor((np.random.random((5, 5)) - 0.5) * 100)
print("base_data = \n{}\n".format(base_data))

print("base_data.T = \n{}\n".format(base_data.T))
print("base_data.transpose() = \n{}\n".format(base_data.transpose()))

matrix_one = np.ones((5, 5))
print("matrix_one = \n{}\n".format(matrix_one))

minus_one = np.dot(matrix_one, -1)
print("minus_one = \n{}\n".format(minus_one))

print("np.dot(base_data, minus_one) = \n{}\n".format(
 np.dot(base_data, minus_one)))
这段代码输出如下:

base_data = 
[[-49. -5. 11. -13. -41.]
 [ -6. -33. -33. -47. -4.]
 [-38. 26. 28. -18. 18.]
 [ -3. -19. -15. -39. 45.]
 [-43. 6. 18. -15. -21.]]

base_data.T = 
[[-49. -6. -38. -3. -43.]
 [ -5. -33. 26. -19. 6.]
 [ 11. -33. 28. -15. 18.]
 [-13. -47. -18. -39. -15.]
 [-41. -4. 18. 45. -21.]]

base_data.transpose() = 
[[-49. -6. -38. -3. -43.]
 [ -5. -33. 26. -19. 6.]
 [ 11. -33. 28. -15. 18.]
 [-13. -47. -18. -39. -15.]
 [-41. -4. 18. 45. -21.]]

matrix_one = 
[[ 1. 1. 1. 1. 1.]
 [ 1. 1. 1. 1. 1.]
 [ 1. 1. 1. 1. 1.]
 [ 1. 1. 1. 1. 1.]
 [ 1. 1. 1. 1. 1.]]

minus_one = 
[[-1. -1. -1. -1. -1.]
 [-1. -1. -1. -1. -1.]
 [-1. -1. -1. -1. -1.]
 [-1. -1. -1. -1. -1.]
 [-1. -1. -1. -1. -1.]]

np.dot(base_data, minus_one) = 
[[ 97. 97. 97. 97. 97.]
 [ 123. 123. 123. 123. 123.]
 [ -16. -16. -16. -16. -16.]
 [ 31. 31. 31. 31. 31.]
 [ 55. 55. 55. 55. 55.]]
登入後複製



随机数

本文的最后,我们来看一下随机数的使用。

随机数是我们在编程过程中非常频繁用到的一个功能。例如:生成演示数据,或者将已有的数据顺序随机打乱以便分割出建模数据和验证数据。

numpy.random 包中包含了很多中随机数的算法。下面我们列举四种最常见的用法:


# rand.py
import numpy as np
print("random: {}\n".format(np.random.random(20)));
print("rand: {}\n".format(np.random.rand(3, 4)));
print("randint: {}\n".format(np.random.randint(0, 100, 20)));
print("permutation: {}\n".format(np.random.permutation(np.arange(20))));
登入後複製


在四种用法分别是:

  1. 生成20个随机数,它们每一个都是[0.0, 1.0)之间

  2. 根据指定的shape生成随机数

  3. 生成指定范围内([0, 100))的指定数量(20)的随机整数

  4. 对已有的数据([0, 1, 2, ..., 19])的顺序随机打乱顺序

这段代码的输出如下所示:


random: [0.62956026 0.56816277 0.30903156 0.50427765 0.92117724 0.43044905
 0.54591323 0.47286235 0.93241333 0.32636472 0.14692983 0.02163887
 0.85014782 0.20164791 0.76556972 0.15137427 0.14626625 0.60972522
 0.2995841 0.27569573]
rand: [[0.38629927 0.43779617 0.96276889 0.80018417]
 [0.67656892 0.97189483 0.13323458 0.90663724]
 [0.99440473 0.85197677 0.9420241 0.79598706]]
randint: [74 65 51 34 22 69 81 36 73 35 98 26 41 84 0 93 41 6 51 55]
permutation: [15 3 8 18 14 19 16 1 0 4 10 17 5 2 6 12 9 11 13 7]
登入後複製

相关推荐:

Python numpy 点数组去重

numpy中的轴与维度


以上是Python 機器學習庫 NumPy的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
作者最新文章
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板