這篇文章主要介紹了Python使用 Beanstalkd 做非同步任務處理的方法,現在分享給大家,也給大家做個參考。一起來看看吧
使用Beanstalkd 作為訊息佇列服務,然後結合Python 的裝飾器語法實作一個簡單的非同步任務處理工具.
最終效果
#定義任務:
from xxxxx.job_queue import JobQueue queue = JobQueue() @queue.task('task_tube_one') def task_one(arg1, arg2, arg3): # do task
提交任務:
task_one.put(arg1="a", arg2="b", arg3="c")
然後就可以由後台的work 執行緒去執行這些任務了。
實作過程
1、了解Beanstalk Server
#Beanstalk is a simple, fast work queue. https://github.com /kr/beanstalkd
Beanstalk 是一個C 語言實作的訊息佇列服務。它提供了通用的接口,最初設計的目的是透過非同步運行耗時的任務來減少大量Web應用程式中的頁面延遲。針對不同的語言,有不同的 Beanstalkd Client 實作。 Python 裡就有 beanstalkc 等。我就是利用 beanstalkc 來作為與 beanstalkd server 溝通的工具。
2、任務非同步執行實作原理
#beanstalkd 只能進行字串的任務調度。為了讓程式支援提交函數和參數,然後由woker執行函數並攜帶參數。需要一個中間層來將函數與傳遞的參數註冊。
實作主要包含3個部分:
Subscriber: 負責將函數註冊到 beanstalk 的一個tube上,實作很簡單,註冊函數名稱和函數本身的對應關係。 (也就意味著同一個分組(tube)下不能有相同函數名存在)。資料儲存在類別變數裡。
class Subscriber(object): FUN_MAP = defaultdict(dict) def __init__(self, func, tube): logger.info('register func:{} to tube:{}.'.format(func.__name__, tube)) Subscriber.FUN_MAP[tube][func.__name__] = func
JobQueue: 方便將一個普通函數轉換為具有Putter 能力的裝飾器
class JobQueue(object): @classmethod def task(cls, tube): def wrapper(func): Subscriber(func, tube) return Putter(func, tube) return wrapper
Putter: 將函數名稱、函數參數、指定的分組組合為一個對象,然後json 序列化為字串,最後透過beanstalkc 推送到beanstalkd 佇列。
class Putter(object): def __init__(self, func, tube): self.func = func self.tube = tube # 直接调用返回 def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) # 推给离线队列 def put(self, **kwargs): args = { 'func_name': self.func.__name__, 'tube': self.tube, 'kwargs': kwargs } logger.info('put job:{} to queue'.format(args)) beanstalk = beanstalkc.Connection(host=BEANSTALK_CONFIG['host'], port=BEANSTALK_CONFIG['port']) try: beanstalk.use(self.tube) job_id = beanstalk.put(json.dumps(args)) return job_id finally: beanstalk.close()
Worker: 從beanstalkd 佇列中取出字串,然後透過json.loads 反序列化為對象,獲得函數名稱、參數和tube 。最後從 Subscriber 得到 函數名稱對應的函數程式碼,然後傳遞參數執行函數。
class Worker(object): worker_id = 0 def __init__(self, tubes): self.beanstalk = beanstalkc.Connection(host=BEANSTALK_CONFIG['host'], port=BEANSTALK_CONFIG['port']) self.tubes = tubes self.reserve_timeout = 20 self.timeout_limit = 1000 self.kick_period = 600 self.signal_shutdown = False self.release_delay = 0 self.age = 0 self.signal_shutdown = False signal.signal(signal.SIGTERM, lambda signum, frame: self.graceful_shutdown()) Worker.worker_id += 1 import_module_by_str('pear.web.controllers.controller_crawler') def subscribe(self): if isinstance(self.tubes, list): for tube in self.tubes: if tube not in Subscriber.FUN_MAP.keys(): logger.error('tube:{} not register!'.format(tube)) continue self.beanstalk.watch(tube) else: if self.tubes not in Subscriber.FUN_MAP.keys(): logger.error('tube:{} not register!'.format(self.tubes)) return self.beanstalk.watch(self.tubes) def run(self): self.subscribe() while True: if self.signal_shutdown: break if self.signal_shutdown: logger.info("graceful shutdown") break job = self.beanstalk.reserve(timeout=self.reserve_timeout) # 阻塞获取任务,最长等待 timeout if not job: continue try: self.on_job(job) self.delete_job(job) except beanstalkc.CommandFailed as e: logger.warning(e, exc_info=1) except Exception as e: logger.error(e) kicks = job.stats()['kicks'] if kicks < 3: self.bury_job(job) else: message = json.loads(job.body) logger.error("Kicks reach max. Delete the job", extra={'body': message}) self.delete_job(job) @classmethod def on_job(cls, job): start = time.time() msg = json.loads(job.body) logger.info(msg) tube = msg.get('tube') func_name = msg.get('func_name') try: func = Subscriber.FUN_MAP[tube][func_name] kwargs = msg.get('kwargs') func(**kwargs) logger.info(u'{}-{}'.format(func, kwargs)) except Exception as e: logger.error(e.message, exc_info=True) cost = time.time() - start logger.info('{} cost {}s'.format(func_name, cost)) @classmethod def delete_job(cls, job): try: job.delete() except beanstalkc.CommandFailed as e: logger.warning(e, exc_info=1) @classmethod def bury_job(cls, job): try: job.bury() except beanstalkc.CommandFailed as e: logger.warning(e, exc_info=1) def graceful_shutdown(self): self.signal_shutdown = True
寫上面程式碼的時候,發現一個問題:
透過Subscriber 註冊函數名稱和函數本身的對應關係,是在一個Python解釋器,也就是在一個進程裡運行的,而Worker 又是異步在另外的進程運行,怎麼樣才能讓Worker 也能拿到和Putter 一樣的Subscriber。最後發現透過 Python 的裝飾器機制可以解決這個問題。
就是這句解決了Subscriber 的問題
import_module_by_str('pear.web.controllers.controller_crawler')
# import_module_by_str 的实现 def import_module_by_str(module_name): if isinstance(module_name, unicode): module_name = str(module_name) __import__(module_name)
執行import_module_by_str 時,會呼叫__import__ 動態載入類別和函數。將使用了 JobQueue 的函數所在模組載入到記憶體之後。當 執行 Woker 時,Python 解釋器就會先執行 @修飾的裝飾器程式碼,也會把 Subscriber 中的對應關係載入到記憶體。
實際使用可以看https://github.com/jiyangg/Pear/blob/master/pear/jobs/job_queue.py
相關建議:
以上是Python使用 Beanstalkd 做非同步任務處理的方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!