首頁 後端開發 Python教學 關於Tensorflow中的tf.train.batch函數

關於Tensorflow中的tf.train.batch函數

Apr 24, 2018 pm 02:13 PM
tensorflow 函數

這篇文章主要介紹了關於Tensorflow中的tf.train.batch函數的使用,現在分享給大家,也給大家做個參考。一起來看看吧

這兩天一直在看tensorflow中的讀取資料的佇列,說實話,真的是很難懂。也可能我之前沒這方面的經驗吧,最早我都使用的theano,什麼都是自己寫。經過這兩天的文檔以及相關資料,並且請教了國內的師弟。今天算是有點小感受了。簡單的說,就是計算圖是從一個管道中讀取資料的,錄入管道是用的現成的方法,讀取也是。為了確保多執行緒的時候從一個管道讀取資料不會亂吧,所以這種時候 讀取的時候需要執行緒管理的相關操作。今天我實驗室了一個簡單的操作,就是給一個有序的數據,看看讀出來是不是有序的,結果發現是有序的,所以直接給代碼:

import tensorflow as tf
import numpy as np

def generate_data():
  num = 25
  label = np.asarray(range(0, num))
  images = np.random.random([num, 5, 5, 3])
  print('label size :{}, image size {}'.format(label.shape, images.shape))
  return label, images

def get_batch_data():
  label, images = generate_data()
  images = tf.cast(images, tf.float32)
  label = tf.cast(label, tf.int32)
  input_queue = tf.train.slice_input_producer([images, label], shuffle=False)
  image_batch, label_batch = tf.train.batch(input_queue, batch_size=10, num_threads=1, capacity=64)
  return image_batch, label_batch

image_batch, label_batch = get_batch_data()
with tf.Session() as sess:
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(sess, coord)
  i = 0
  try:
    while not coord.should_stop():
      image_batch_v, label_batch_v = sess.run([image_batch, label_batch])
      i += 1
      for j in range(10):
        print(image_batch_v.shape, label_batch_v[j])
  except tf.errors.OutOfRangeError:
    print("done")
  finally:
    coord.request_stop()
  coord.join(threads)
登入後複製

記得那個slice_input_producer方法,預設是要shuffle的哈。

Besides, I would like to comment this code.

1: there is a parameter 'num_epochs' in slice_input_producer, which controls how many epochs the slice_input_producer, which controls how many epochs the slice_input_producer method wod method runs the specified epochs, it would report the OutOfRangeRrror. I think it would be useful for our control the training epochs.

2: the output of this method is one s

#2: the output of this method is one s 案, is s single image with tensorflow API, such as normalization, crops, and so on, then this single image is feed to batch method, a batch of images for training or testing wouldbe received.#tftf .train.batch和tf.train.shuffle_batch的區別用法


tf.train.batch([example, label], batch_size=batch_size, capacity=capacity):[example, label ]表示樣本和樣本標籤,這個可以是一個樣本和一個樣本標籤,batch_size是一個傳回的一個batch樣本集的樣本個數。 capacity是隊列中的容量。這主要是依序組合成一個batch

tf.train.shuffle_batch([example, label], batch_size=batch_size, capacity=capacity, min_after_dequeue)。這裡面的參數和上面的一樣的意思。不一樣的是這個參數min_after_dequeue,一定要確保這參數小於capacity參數的值,否則會出錯。這個代表佇列中的元素大於它的時候就輸出亂的順序的batch。也就是說這個函數的輸出結果是一個亂序的樣本排列的batch,不是按照順序排列的。

上面的函數回傳值都是一個batch的樣本和樣本標籤,只是一個是按照順序,另外一個是隨機的


相關推薦:


#tensorflow 使用flags定義指令列參數的方法

Tensorflow之Saver的用法

############################################################# ######

以上是關於Tensorflow中的tf.train.batch函數的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

golang函數動態建立新函數的技巧 golang函數動態建立新函數的技巧 Apr 25, 2024 pm 02:39 PM

Go語言提供了兩種動態函數創建技術:closures和反射。 closures允許存取閉包作用域內的變量,而反射可使用FuncOf函數建立新函數。這些技術在自訂HTTP路由器、實現高度可自訂的系統和建置可插拔的元件方面非常有用。

C++ 函數命名中參數順序的考慮 C++ 函數命名中參數順序的考慮 Apr 24, 2024 pm 04:21 PM

在C++函數命名中,考慮參數順序至關重要,可提高可讀性、減少錯誤並促進重構。常見的參數順序約定包括:動作-物件、物件-動作、語意意義和遵循標準函式庫。最佳順序取決於函數目的、參數類型、潛在混淆和語言慣例。

excel函數公式大全 excel函數公式大全 May 07, 2024 pm 12:04 PM

1. SUM函數,用於對一列或一組單元格中的數字進行求和,例如:=SUM(A1:J10)。 2、AVERAGE函數,用於計算一列或一組儲存格中的數字的平均值,例如:=AVERAGE(A1:A10)。 3.COUNT函數,用於計算一列或一組單元格中的數字或文字的數量,例如:=COUNT(A1:A10)4、IF函數,用於根據指定的條件進行邏輯判斷,並返回相應的結果。

如何在Java中寫出高效和可維護的函數? 如何在Java中寫出高效和可維護的函數? Apr 24, 2024 am 11:33 AM

編寫高效且可維護的Java函數的關鍵在於:保持簡潔。使用有意義的命名。處理特殊情況。使用適當的可見性。

C++ 函式預設參數與可變參數的優缺點比較 C++ 函式預設參數與可變參數的優缺點比較 Apr 21, 2024 am 10:21 AM

C++函數中預設參數的優點包括簡化呼叫、增強可讀性、避免錯誤。缺點是限制靈活性、命名限制。可變參數的優點包括無限彈性、動態綁定。缺點包括複雜性更高、隱式型別轉換、除錯困難。

C++ 函式回傳參考型別有什麼好處? C++ 函式回傳參考型別有什麼好處? Apr 20, 2024 pm 09:12 PM

C++中的函數傳回參考類型的好處包括:效能提升:引用傳遞避免了物件複製,從而節省了記憶體和時間。直接修改:呼叫方可以直接修改傳回的參考對象,而無需重新賦值。程式碼簡潔:引用傳遞簡化了程式碼,無需額外的賦值操作。

自訂 PHP 函數和預定義函數之間有什麼區別? 自訂 PHP 函數和預定義函數之間有什麼區別? Apr 22, 2024 pm 02:21 PM

自訂PHP函數與預定義函數的差異在於:作用域:自訂函數僅限於其定義範圍,而預定義函數可在整個腳本中存取。定義方式:自訂函數使用function關鍵字定義,而預先定義函數則由PHP核心定義。參數傳遞:自訂函數接收參數,而預先定義函數可能不需要參數。擴充性:自訂函數可以根據需要創建,而預定義函數是內建的且無法修改。

C++ 函式異常進階:客製化錯誤處理 C++ 函式異常進階:客製化錯誤處理 May 01, 2024 pm 06:39 PM

C++中的異常處理可透過自訂異常類別增強,提供特定錯誤訊息、上下文資訊以及根據錯誤類型執行自訂操作。定義繼承自std::exception的異常類,提供特定的錯誤訊息。使用throw關鍵字拋出自訂異常。在try-catch區塊中使用dynamic_cast將捕獲到的異常轉換為自訂異常類型。在實戰案例中,open_file函數會拋出FileNotFoundException異常,捕捉並處理該異常可提供更具體的錯誤訊息。

See all articles