PHP利用數組實現矩陣數學運算的方法
這篇文章主要介紹了PHP使用陣列實現矩陣數學運算的方法,結合具體實例形式分析了php基於數組實現矩陣表示與運算的相關操作技巧,需要的朋友可以參考下
具體如下:
矩陣運算就是對兩個數據表進行某種數學運算,並得到另一個數據表.
下面的例子中我們創建了一個基本完整的矩陣運算函數庫,以便用於矩陣運算的程式中.
來自PHP5 in Practice (U.S.)Elliott III & Jonathan D.Eisenhamer
<?php // A Library of Matrix Math functions. // All assume a Matrix defined by a 2 dimensional array, where the first // index (array[x]) are the rows and the second index (array[x][y]) // are the columns // First create a few helper functions // A function to determine if a matrix is well formed. That is to say that // it is perfectly rectangular with no missing values: function _matrix_well_formed($matrix) { // If this is not an array, it is badly formed, return false. if (!(is_array($matrix))) { return false; } else { // Count the number of rows. $rows = count($matrix); // Now loop through each row: for ($r = 0; $r < $rows; $r++) { // Make sure that this row is set, and an array. Checking to // see if it is set is ensuring that this is a 0 based // numerically indexed array. if (!(isset($matrix[$r]) && is_array($matrix[$r]))) { return false; } else { // If this is row 0, calculate the columns in it: if ($r == 0) { $cols = count($matrix[$r]); // Ensure that the number of columns is identical else exit } elseif (count($matrix[$r]) != $cols) { return false; } // Now, loop through all the columns for this row for ($c = 0; $c < $cols; $c++) { // Ensure this entry is set, and a number if (!(isset($matrix[$r][$c]) && is_numeric($matrix[$r][$c]))) { return false; } } } } } // Ok, if we actually made it this far, then we have not found // anything wrong with the matrix. return true; } // A function to return the rows in a matrix - // Does not check for validity, it assumes the matrix is well formed. function _matrix_rows($matrix) { return count($matrix); } // A function to return the columns in a matrix - // Does not check for validity, it assumes the matrix is well formed. function _matrix_columns($matrix) { return count($matrix[0]); } // This function performs operations on matrix elements, such as addition // or subtraction. To use it, pass it 2 matrices, and the operation you // wish to perform, as a string: '+', '-' function matrix_element_operation($a, $b, $operation) { // Verify both matrices are well formed $valid = false; if (_matrix_well_formed($a) && _matrix_well_formed($b)) { // Make sure they have the same number of columns & rows $rows = _matrix_rows($a); $columns = _matrix_columns($a); if (($rows == _matrix_rows($b)) && ($columns == _matrix_columns($b))) { // We have a valid setup for continuing with element math $valid = true; } } // If invalid, return false if (!($valid)) { return false; } // For each element in the matrices perform the operatoin on the // corresponding element in the other array to it: for ($r = 0; $r < $rows; $r++) { for ($c = 0; $c < $columns; $c++) { eval('$a[$r][$c] '.$operation.'= $b[$r][$c];'); } } // Return the finished matrix: return $a; } // This function performs full matrix operations, such as matrix addition // or matrix multiplication. As above, pass it to matrices and the // operation: '*', '-', '+' function matrix_operation($a, $b, $operation) { // Verify both matrices are well formed $valid = false; if (_matrix_well_formed($a) && _matrix_well_formed($b)) { // Make sure they have complementary numbers of rows and columns. // The number of rows in A should be the number of columns in B $rows = _matrix_rows($a); $columns = _matrix_columns($a); if (($columns == _matrix_rows($b)) && ($rows == _matrix_columns($b))) { // We have a valid setup for continuing $valid = true; } } // If invalid, return false if (!($valid)) { return false; } // Create a blank matrix the appropriate size, initialized to 0 $new = array_fill(0, $rows, array_fill(0, $rows, 0)); // For each row in a ... for ($r = 0; $r < $rows; $r++) { // For each column in b ... for ($c = 0; $c < $rows; $c++) { // Take each member of column b, with each member of row a // and add the results, storing this in the new table: // Loop over each column in A ... for ($ac = 0; $ac < $columns; $ac++) { // Evaluate the operation eval('$new[$r][$c] += $a[$r][$ac] '. $operation.' $b[$ac][$c];'); } } } // Return the finished matrix: return $new; } // A function to perform scalar operations. This means that you take the scalar value, // and the operation provided, and apply it to every element. function matrix_scalar_operation($matrix, $scalar, $operation) { // Verify it is well formed if (_matrix_well_formed($matrix)) { $rows = _matrix_rows($matrix); $columns = _matrix_columns($matrix); // For each element in the matrix, multiply by the scalar for ($r = 0; $r < $rows; $r++) { for ($c = 0; $c < $columns; $c++) { eval('$matrix[$r][$c] '.$operation.'= $scalar;'); } } // Return the finished matrix: return $matrix; } else { // It wasn't well formed: return false; } } // A handy function for printing matrices (As an HTML table) function matrix_print($matrix) { // Verify it is well formed if (_matrix_well_formed($matrix)) { $rows = _matrix_rows($matrix); $columns = _matrix_columns($matrix); // Start the table echo '<table>'; // For each row in the matrix: for ($r = 0; $r < $rows; $r++) { // Begin the row: echo '<tr>'; // For each column in this row for ($c = 0; $c < $columns; $c++) { // Echo the element: echo "<td>{$matrix[$r][$c]}</td>"; } // End the row. echo '</tr>'; } // End the table. echo "</table>/n"; } else { // It wasn't well formed: return false; } } // Let's do some testing. First prepare some formatting: echo "<mce:style><!-- table { border: 1px solid black; margin: 20px; } td { text-align: center; } --></mce:style><style mce_bogus="1">table { border: 1px solid black; margin: 20px; } td { text-align: center; }</style>/n"; // Now let's test element operations. We need identical sized matrices: $m1 = array( array(5, 3, 2), array(3, 0, 4), array(1, 5, 2), ); $m2 = array( array(4, 9, 5), array(7, 5, 0), array(2, 2, 8), ); // Element addition should give us: 9 12 7 // 10 5 4 // 3 7 10 matrix_print(matrix_element_operation($m1, $m2, '+')); // Element subtraction should give us: 1 -6 -3 // -4 -5 4 // -1 3 -6 matrix_print(matrix_element_operation($m1, $m2, '-')); // Do a scalar multiplication on the 2nd matrix: 8 18 10 // 14 10 0 // 4 4 16 matrix_print(matrix_scalar_operation($m2, 2, '*')); // Define some matrices for full matrix operations. // Need to be complements of each other: $m3 = array( array(1, 3, 5), array(-2, 5, 1), ); $m4 = array( array(1, 2), array(-2, 8), array(1, 1), ); // Matrix multiplication gives: 0 31 // -11 37 matrix_print(matrix_operation($m3, $m4, '*')); // Matrix addition gives: 9 20 // 4 15 matrix_print(matrix_operation($m3, $m4, '+')); ?>
相關推薦:
以上是PHP利用數組實現矩陣數學運算的方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP 8.4 帶來了多項新功能、安全性改進和效能改進,同時棄用和刪除了大量功能。 本指南介紹如何在 Ubuntu、Debian 或其衍生版本上安裝 PHP 8.4 或升級到 PHP 8.4

Visual Studio Code,也稱為 VS Code,是一個免費的原始碼編輯器 - 或整合開發環境 (IDE) - 可用於所有主要作業系統。 VS Code 擁有大量針對多種程式語言的擴展,可以輕鬆編寫

JWT是一種基於JSON的開放標準,用於在各方之間安全地傳輸信息,主要用於身份驗證和信息交換。 1.JWT由Header、Payload和Signature三部分組成。 2.JWT的工作原理包括生成JWT、驗證JWT和解析Payload三個步驟。 3.在PHP中使用JWT進行身份驗證時,可以生成和驗證JWT,並在高級用法中包含用戶角色和權限信息。 4.常見錯誤包括簽名驗證失敗、令牌過期和Payload過大,調試技巧包括使用調試工具和日誌記錄。 5.性能優化和最佳實踐包括使用合適的簽名算法、合理設置有效期、

字符串是由字符組成的序列,包括字母、數字和符號。本教程將學習如何使用不同的方法在PHP中計算給定字符串中元音的數量。英語中的元音是a、e、i、o、u,它們可以是大寫或小寫。 什麼是元音? 元音是代表特定語音的字母字符。英語中共有五個元音,包括大寫和小寫: a, e, i, o, u 示例 1 輸入:字符串 = "Tutorialspoint" 輸出:6 解釋 字符串 "Tutorialspoint" 中的元音是 u、o、i、a、o、i。總共有 6 個元

本教程演示瞭如何使用PHP有效地處理XML文檔。 XML(可擴展的標記語言)是一種用於人類可讀性和機器解析的多功能文本標記語言。它通常用於數據存儲

靜態綁定(static::)在PHP中實現晚期靜態綁定(LSB),允許在靜態上下文中引用調用類而非定義類。 1)解析過程在運行時進行,2)在繼承關係中向上查找調用類,3)可能帶來性能開銷。

PHP的魔法方法有哪些? PHP的魔法方法包括:1.\_\_construct,用於初始化對象;2.\_\_destruct,用於清理資源;3.\_\_call,處理不存在的方法調用;4.\_\_get,實現動態屬性訪問;5.\_\_set,實現動態屬性設置。這些方法在特定情況下自動調用,提升代碼的靈活性和效率。
